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Abstract

Author: Lucia L. Baldwin

Title: Statistical Physics Based
Heuristic Clustering Algorithms

with an Application to Econophysics
Institution: Florida Atlantic University
Dissertation Advisor: Dr. Luc T. Wille

Degree: Doctor of Philosophy
Year: 2003

Three new approaches to the clustering of data sets are presented. They
are heuristic methods and represent forms of unsupervised (non-parametric)
clustering. Applied to an unknown set of data these methods automati-
cally determine the number of clusters and their location using no a priori
assumptions. All are based on analogies with different physical phenomena.

The first technique, named the Percolation Clustering Algorithm, em-
bodies a novel variation on the nearest-neighbor algorithm focusing on the
connectivity between sample points. Exploiting the equivalence with a per-
colation process, this algorithm considers data points to be surrounded by
expanding hyperspheres, which bond when they touch each other. Once a
sequence of joined spheres spans an entire cluster, percolation occurs and the

cluster size remains constant until it merges with a neighboring cluster.
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The second procedure, named Nucleation and Growth Clustering, exploits
the analogy with nucleation and growth which occurs in island formation
during epitaxial growth of solids. The original data points are nucleation
centers, around which aggregation will occur. Additional “ad-data” that are
introduced into the sample space, interact with the data points and stick if
located within a threshold distance. These “ad-data” are used as a tool to
facilitate the detection of clusters.

The third method, named Discrete Depositior Clustering Algorithm, con-
strains deposition to occur on a grid, which has the the advantage of com-
putational efficiency as opposed to the continuous deposition used in the
previous method. The original data form the vertexes of a sparse graph and
the deposition sites are defined to be the middle points of this graphs edges.
Ad-data are introduced on the deposition site and the system is allowed to
evolve in a self-organizing regime. This allows the simulation of a phase
transition and by monitoring the specific heat capacity of the system one
can mark out a “natural” criterion for validating the partition.

All of these techniques are competitive with existing algorithms and offer
possible advantages for certain types of data distributions. A practical appli-
cation is presented using the Percolation Clustering Algorithm to determine
the taxonomy of the Dow Jones Industrial Average portfolio. The statistical
properties of the correlation coefficients between DJIA components are stud-
ied along with the eigenvalues of the correlation matrix between the DJIA

components.
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Chapter 1

Introduction

Today’s interest in data mining is highly motivated by the explosion of data
flooding the world. overwhelming individuals as well as large organizations.
All quantitative sciences gather their forces in the quest of leveraging the
“Big Bang” of data content into structured information and useful knowledge.
Undoubtedly computer development fueled this explosion and at the same
time offers the assistance needed to master it.

The challenge is that. although machines outperform the human brain
when it comes to simple repetitive operations, enabling artificial systems to
process data is not a trivial job. The brain can deal with fuzzy, noisy and even
inconsistent information. It is flexible, robust and fault tolerant [1]. Even
simple biological creatures perform fundamental tasks such as perception.
classification and recognition. Training computers to mirror this biological
performance requires addressing the problems in a rigorous. formal manner.

Physics enriches us with an impressive library of concepts and mathe-
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matical tools whose highly abstract forms make them applicable to a wide
variety of problems. The similarity between subjects is also encouraging. For
instance, statistical physics studies systems with a very large number of ele-
ments where stochastic (thermal) fluctuations generate macroscopic effects.
Data mining addresses the problem of revealing the structures and correla-
tions hidden by noise in large data sets. Therefore, in recent years there
has been an increased interest in adapting numerical and analytic techniques
from statistical physics to different areas of data mining.

The first step in the cognitive process when we have little a priori knowl-
edge about the structure of data or the information we are looking for is to
cluster data: divide the data set into a small number of subgroups (clusters)
in such a way that the elements within the same subgroup are more similar to
each other than to elements from all other different subgroups {2]. Clustering
can be considered the archetypical data mining problem, closely related to
unsupervised learning and pattern recognition.

Once the clustering problem is defined, a number of fundamental issues
arise. We have to describe a measure of similarity (or dissimilarity) between
sample points as well as a criterion to choose the best partitioning of the
data set. These tasks are inherently related to calculations combining com-
ponents of data points and involve underlying issues of measurement theory.
General aspects of the clustering procedures, their classification. as well as
the major directions engaged today are presented in the following sections.
The last part of this introductory chapter describes the main data files used

throughout the dissertation.
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The following chapters have a more definite aim, i. e. to introduce three
new clustering techniques. The heuristic approach is based on analogies
to well-studied physical processes. The algorithms have the advantage of
simplicity and computational efficiency over existing methods and provide

competitive results.

1.1 Background

Clustering, being an attempt to partition data sets into groups of similar
points, becomes a well-defined problem once two functions are chosen: the
similarity (or dissimilarity) between two sample points and the criterion (cost
function) used to evaluate different partitions [2]. Each of these two functions
can be selected in many different ways according to the nature of the data

and any a priori knowledge we have about it.

1.1.1 Similarity Function

[ will start by discussing the first of these two issues: the measure of similar-
ity between two sample points. The only constraint on this binary similarity
function is that it has to be symmetric s(i,j) = s(j,1). Consider a set of N
sample points with an identical number of attributes D in a standard spread-
sheet set-up, as presented in Table 1.1. All attributes have to be converted
into features by encoding them in a numerical format. A data point can be
seen as a vector in a D-dimensional space, where the coordinates correspond

to its features. Before attempting to combine the vector coordinates. we

3
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Sample Point | Attribute; Attribute, Attributep
X3 I Tk I1p
X; Ii1 Tik IiD
XN TNy TNk IND

Table 1.1: A set of N sample points with an identical number of attributes

D in a standard spreadsheet format.

should be aware that the space is not necessarily continuous. The categorical
features (such as color. sex, group membership, etc.). even under numerical
format, cannot be ordered. In a spreadsheet format they are represented as
numbers using a specified code, but one cannot define a distance between
unordered numerical values. In such cases. one can choose a non-metric sim-
ilarity function between two sample points, x; and x; as. for example, the

normalized inner product of the two vectors:

S(XiX;) =
[lac: 1l
Such a similarity measure, or variations of it. are frequently used in biological
taxonomy or information theory [2].
This dissertation focuses on data sets in which all feature values can be

ordered, which means that for two different values, a, and a,, of any attribute

a one can always define the operators a; > a; or a, < a,. Therefore. a norm.

4
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or distance, can be defined in feature space and can be used as a similarity

measure, s. For two sample points, x; and x;. s becomes
Sx,.x, = llx: — x| (1.1)

The similarity function (distance) between two vectors described by equation
(1.1) should be invariant to transformations natural to the problem. Thus the
metric has to be selected based on previously known properties of the data.
Consider two vectors x; and x; with attributes z;x and zj (k= 1..... D).
respectively, in a uniform isotropic feature space. In this case the binary

Euclidean distance:

D
d; = % = x; e = Z(Iik - zjk)? (1.2)

k=1
is a good choice for a similarity measure, since it is invariant to translations
and rotations of the coordinates. However. we can not always assume the
isotropy of feature space. Imagine. for example, that data points represent
individuals whose characteristics are height, income, blood pressure. num-
ber of children. etc. A rotation of the original coordinates would generate
axes with no real meanings, a dissimilarity along any of these axes does not
correspond to any easily interpreted difference between individuals. When
we have little a priori knowledge about the properties of sample attributes,
an unassuming way of combining vector coordinates could be advantageous.

For instance, the Manhattan distance defined as:
D
d?j! = [|xi — xjllar = z |z — Tk (1.3)
k=1

5
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can then be used as a similarity function.

In a low-dimensional sample space both metrics usually generate basically
equivalent results for well defined clusters. The differences between these
norms, as in fact differences between any other norms, increase with the
dimensionality of the sample points.

Since we tested our algorithms on low-dimensional data files, the Manhat-
tan distance is as good as any other norm and for computational efficiency
reasons we prefer it since it is faster to evaluate. Throughout the rest of the
dissertation we refer to it under the simplified notation d;;, unless otherwise
specified. The Euclidean norm was used to study the robustness of some of
the partitions obtained with the Manhattan distance.

No matter which metric is used to measure the similarity between two
vectors, it involves combining the values of their coordinates. This raises a
scaling problem, since features of different magnitudes should have equivalent
weight in calculating a binary distance. Some norms, like the Euclidean
distance, for instance, are invariant to rotations and translations but sensitive
to other linear transformations. The Manhattan distance, on the other hand.
is susceptible to any linear transformation of the coordinates. A general
distortion of feature space is not a concern unless it is natural to the problem.
However, a change in the units of measured values should have no influence on
clustering results. This is why in many cases data normalization is required

before any clustering procedures are performed.
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1.1.2 Normalization

By normalization we understand the scaling of all features to a specified
range (usually [0, 1] or [—1. 1]), so that all of them have equivalent weights.
Several normalization techniques are presented below.

Consider a set of IV sample points where the feature r; has the values:
Tiks ... Zyk and let Tilmar: Tk|min. Tk and s; be the maximum. minimum.
mean and standard deviation, respectively, of this feature. The new scaled

values r/, corresponding to rx;; can be defined as:

;_ Tik = Tk|min
Tik =

(1.4)

Tklmaz = Tklmin
The transformation expressed by (1.4) is called range normalization and it
changes the feature's span from [Zi|min: Zk|maz] to [0, 1]. Another option. is
to convert all values such that |z,| <1 by:

’ Tik
Ty = T—. 1.5
tk Irjklma:t ( )
where |Tji|me, is the maximum absolute value of attribute k over all sample
points. Alternatively. the scaling:

, Tik — Tk

Ty = (1.6)

Ly
makes all the normalized values have zero mean.
Since the minimum, maximum and average values are drastically affected
by outliers, i. e. the elements in the tails of the distribution, a better choice
is a percentile normalization, as given, for example, by:

' Tik = Tk|as

Tij (17)

- [
Tiloz.s — Zklos

7
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where 1|25 and z¢|g7.5 are the 2.5 and the 97.5 percentiles, respectively. This
conversion scales data so that 95% of the values are between 0 and 1.

The most common normalization option is to make all features have zero-
mean and unit variance:

r _ Tik— Tk
T, = ——.

(1.8)

Sk
This way one can easily compare the distribution of the z, feature to the
unit normal distribution.

Normalization, like any data transformation, corrupts to a certain degree
the original data configuration. Therefore this procedure has to match the
objective of the study. For example formulas (1.4), (1.7) or (1.8) give com-
parable weight and similar variability to all features and make them suitable
for the feature composition used to calculate a norm. Reducing all features’
standard deviations to a similar range might diminish the natural difference
between groups of sample points{2]. When data variability is under study. we
need to preserve it throughout normalization, hence equations such as (1.5)

and (1.6) are preferable alternatives.

1.1.3 Optimization Criteria

Once a distance measure is defined, the second important issue of any clus-
tering technique is to select the optimization criterion (cost function) used to
evaluate the best partitions of the sample points. This is usually a similarity
function between sets of points and is based on a binary similarity function

between sample points. Having a metric described by equation (1.1), several
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examples of cost functions to be minimized (or maximized) during the clus-
tering procedure are presented below. Given two sets, H; and H,, of vector
points {xXi,...,X,, } and {xX/,,...,X'n, } ., respectively, two possible criterion
functions are: the average distance
] AL
davg(H1. Ha) = p— ;Zl ll%: — x| (1.9)
=1 j=

and the minimum distance between the two sets

dmin(H1. Ha) = e min  ||x — x'|}. (1.10)

Hyx'€Ha2

One of the difficulties encountered in clustering problems is that a similarity
function (distance) between two points can hardly account simultaneously
for the closeness and the interconnectivity among sets of points. Some cost
functions emphasize the closeness between groups of points, others stress the
connectivity between classes. Optimization criteria based on cumulative dis-
tances, such as the one in equation (1.9), reflect well the interconnectivity
between sample points, but tend to favor larger data groups and fail for sets
which contain large variations in cluster sizes. They also give erroneous re-
sults for concave shaped clusters, such as shown in Figure 1.1, i. e. when
points in a given cluster are closer to points in another cluster. For example.
the upper cluster of Figure 1.1, contains the points C, D. and E out of which
C and E are farther apart from each other than point A is from D. There-
fore a clustering algorithm based on cumulative distances might incorrectly
partition the upper and middle clusters. The same statement is true if one

considers the points F' and H with respect to points B and G with the above

9
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Figure 1.1: Three two-dimensional clusters illustrating the problem with

concavity and interconnectivity.

argument. In this type of situation. an optimization criteria which empha-
sizes connectivity more than closeness would find the correct partitioning of
the data.

Methods based on the cost function described by equation (1.10) define
the similarity between two clusters as the similarity of the closest pair of
points belonging to the different clusters. They underline the closeness be-
tween groups and can find clusters of arbitrary shapes and sizes but are highly
susceptible to noise and outliers. Improved performance can be achieved
when a filtering procedure is performed before clustering. By filtering we
understand eliminating the background points and keeping only the data
that have an average distance to the first k nearest neighbors smaller than a
user defined threshold. Nevertheless these techniques fail to correctly parti-

tion the data sets that contain clusters of different densities. Other methods

10
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strive to obtain correct results by normalizing each binary distance via a
specific local length whose value is defined based on the local mean k nearest
neighbor distance.

Some new techniques define elaborate dynamic similarity functions. For
example. Chameleon [5]. a hierarchical agglomerative method. uses a sim-
ilarity function between sets of points that accounts simultaneously for in-
terconnectivity and closeness. The algorithm starts by building a sparse
graph between data points in such a way that data items that are far apart
are completely disconnected. Each edge of the graph is weighted with the
similarity between the two connected data points. An absolute internal in-
terconnectivity. EC. is defined for each group of points as the sum of all edge
weights crossing the mid-cut bisection that splits the cluster into two roughly
equal parts. Considering two groups of points C; and C;. the relative inter-
connectivity, RI. between them is defined as the absolute interconnectivity

normalized by the average internal interconnectivity of the two groups:

|EC(C;, C))|
3(EC(Ci) + EC(C;))

RI(C..C;) = (1.11)

EC(C;.Cj) is the absolute interconnectivity between the two clusters, defined
as the sum of all the edge weights that connect the two groups. and EC(C})
and EC(C;) are the internal interconnectivity of each group respectively.
Also, an absolute closeness, SEC is defined for each group as the average
of the edge weights that cross the mid-cut bisection (as opposed to the sum

of the edge weights for interconnectivity). A relative closeness, RC. for the

11
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clusters C; and Cj, is defined as:

SEC(C;,C;
RC(C:.C) = — ( |ch)| : (1.12)
lC,l+lC,lSEC(C") + [C‘l+|C,1SEC(Cj)

where SEC(C;, C;) is the absolute closeness described as the average weight
of all the vertices that connect the two clusters. |C| and |C,| are the total
number of vertices in each cluster, and. correspondingly, SEC(C;). SEC(C;)
are the internal closeness for the two groups. Using a normalized intercon-
nectivity and closeness between the two merged groups of points accounts
for the nature of each individual cluster and makes the similarity function
between sets a dynamic one. Chameleon selects a pair of clusters to be
linked by maximizing the function RI(C,,C2) x RC(C,.C5)* where « is a
user specified value. When a > 1 a higher significance is given to the relative
closeness and for a < 1 the relative interconnectivity is emphasized. Good
results have been reported for image processing, except that the dynamic
modeling of cluster similarity is applicable only when each cluster contains a
large number of items, such that the quantities defined by equations (1.11)

and (1.12) can be properly determined.

1.1.4 Classification of Clustering Techniques

In spite of their variety, clustering techniques can be divided in two cate-
gories: non-hierarchical and hierarchical. The first type of approach starts
by subjectively partitioning the N sample points among a given number of
C clusters. The members of the clusters are later redistributed according

to an iterative optimization of the appropriately chosen cost function. On
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the other hand, hierarchical clustering techniques group the points according
to a tree-like scheme: whenever two sample points are assigned to the same
cluster at a given level, they will remain together at all parent clustering
levels.

An example of a non-hierarchical approach is the k-means method. [t was
proposed by MacQueen [3] as a simple heuristic method for performing clus-
tering. It is an iterative procedure, which starts with an initial partitioning
of the dataset into k clusters either based on a priori information regarding
the data or else randomly selected. Next, the centroids (average positions)
of each cluster are calculated, data points are reassigned to the centroid that
is closest to them and a new set of centroids is calculated. Other variations
of the method replace the abstract centroid point by the medoid which is
the data point closest to the center of the cluster. The procedure is repeated
until no more reassignments occur. The clustering criterion. which is the
function being optimized, is the sum of the distances between each element
and the nearest centroid (or medoid). This kind of aggregate cost function
is similar to the type described by equation (1.9) and suffers the same lim-
itations. The k-means algorithm is a form of hill-climbing, since it starts
with a certain configuration that it systematically improves until no further
improvements are possible by small changes. In practice this algorithm per-
forms well for clusters that are hyper-ellipsoidal and have similar sizes. but
it cannot find concave shapes or groups of very diverse size. There are two
other key drawbacks to this approach. First, the number of clusters must be

known in advance, or else the algorithm must be run for different k-values
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and a choice between the various clusterings must be made. The second
drawback is that there is no guarantee that the algorithm will converge to
the global minimum, but instead. like all hill-climbing techniques. it may
lead to a local minimum (4], depending on the initial partitioning.

Regarding the hierarchical clustering algorithms there are two methods:
divisive and agglomerative. The first category begins by placing all N data
points in one cluster and then. following the chosen optimization criterion.
splits the cluster in two, three and so on, up to the desired number of clusters.
Alternatively, agglomerative methods start with a number of clusters equal
to the number of sample points and successively merge the clusters {2]. The
hierarchical agglomerative clustering technique that uses equation (1.10) to
find the nearest cluster to be merged is called the nearest-neighbor [2] or
single link [5] algorithm.

An important observation. regarding all the methods mentioned above. is
that they have a parametric modus operandi. in the sense that the number
of clusters and even their locations are prior knowledge included as initial
parameters in these clustering procedures. Clearly, for an unknown data
set. a desirable algorithm is one that provides a “natural”. non-parametric
way of partitioning the sample, based solely on the inner structure of the
data. There are exhaustive methods that effectively search through the entire
solution space and are therefore guaranteed to find the global optimum, but
such methods tend to be very time-consuming, since they involve essentially
an exponential search [6], and they are consequently only applicable to small

data sets.
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1.2 Clustering Techniques Based on Analo-
gies with Physical Phenomena

Several techniques have been proposed over the years to avoid the local min-
imum problem. Some of these are based on the idea of simulated annealing
(7, 8] while others use genetic algorithms [9, 10, 11]. All have the core idea of
allowing “uphill” moves so that the search procedure may escape from local
minima and eventually end up in the global minimum.

Here we are particularly interested in two heuristic methods that perform
clustering by exploiting analogies from statistical physics. The first one.
which borrows ideas from simulated annealing [7], is the Super-Paramagnetic
Clustering method of Domany and collaborators 12, 13, 14. 15|, for which
they were granted a US patent [16]. The central idea of this method is to
mimic. with methods from statistical physics. a cooling process to allow the
data points to group themselves in clusters as the temperature is lowered.
To this end one associates with each data point a Potts spin [17]. a vector
that can be pointing in any one of ¢ directions. Here g should be chosen
larger than the number of clusters present. A group of adjacent parallel
Potts spins forms a cluster. The spins interact with each other like tiny
magnets, with the interaction strength increasing with decreasing distance.
Thus nearby spins will tend to align with each other to minimize their energy.
However, at finite temperature this ordering tendency is offset by entropic
effects which will tend to destroy the order. By starting the simulation at

high temperature (disordered spins. no clusters) and slowly cooling (using a
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Metropolis algorithm [18] one finds that the system undergoes a number of
phase transitions. At each phase transition temperature a cluster of spins
“snaps” into alignment. By monitoring the number of aligned spins and
various statistical fluctuation functions, one is able to detect the number
of clusters and their location. This method has been applied to a wide
range of test data and performs very well in practice [12. 13. 14. 15]. It
improves over the k-means method in that the number of clusters is obtained
automatically as it emerges during the cooling process and that trapping in
local minima does not occur if the cooling proceeds slowly enough. However.
the calculations tend to be quite time consuming and may necessitate some
fine-tuning before the optimal parameters (initial temperature. interactions.
cooling schedule, etc.) can be determined.

Another recent physical approach is also based on putting physical objects
at the data points and exploiting emergent collective behavior. This is the
inhomogeneous chaotic map method of Angelini et al. [19]. In this technique.
a chaotic map is associated with each data point and short-range interactions
between data points are introduced, with coupling strength decreasing with
distance. It is known that such chaotic maps, when coupled together, tend to
synchronize their behavior. The maps are iterated over time until they reach
a stationary regime, which can be shown to be independent of the initial
conditions since it is a macroscopic attractor. In this regime one can deter-
mine the mutual information between the various maps. which is a measure
of the amount of correlation between them. From this mutual information

function, the clusters are identified as follows. A graph is constructed by
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linking any two data points whose mutual information is above some thresh-
old value. The clusters then correspond to the linked components of this
graph, which can be easily determined. By varying the threshold value one
can perform hierarchical clustering. This method was tested on a number of
problems and was found to perform quite well. Slightly better performance
than superparamagnetic clustering was claimed in certain cases. Moreover.
the method does not involve a sweep over temperature which means it is
considerably faster than techniques based on an annealing scheme. This ap-
pears to be quite a promising technique although further test cases will have
to be studied to judge its efficacy on a wide range of applications. There is
still some fine-tuning of parameters involved, which may be a drawback in
complex situations. It is to be noted that in this method too, the number
of clusters emerges from the calculation. rather than being fixed in advance
and that trapping in local minima does not occur due to the independence

of the final state of the initial conditions.

1.3 Data Files

Before presenting the new clustering algorithms which form the core topic of
this dissertation, I will take a moment to describe the main data files used
to develop and test our techniques. There are several other files employed
throughout the report, but the following ones are repeatedly referred to. In
order to avoid redundancies, they are presented only once in this section.

The first example is a simple two-dimensional “toy” problem whose pur-
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Figure 1.2: Data set of 50 two-dimensional sample points grouped in two

circular clusters of different densities, set one unit apart.

pose is to illustrate the concept and general algorithm behavior. The data file
consists of 50 sample points grouped into two circles of equal radii (R = 1)
and different densities. The smaller cluster, centered at the origin, contains
19 points and the larger one 31 points, as shown in Figure 1.2.

To test our algorithm on sensibly complicated examples we used a sec-
ond set of 6000 points. The original file, obtained courtesy of Dr. Marcelo
Blatt, contains two-dimensional sample points distributed in three irregularly
shaped dense areas on a diluted background, as presented in Figure 1.3. All
dense regions have the same uniform distribution, which is 10 times larger
than the density of the background. The data, crafted as a test for the
Super-Paramagnetic Clustering procedure, was used for the first time in the

article by Blatt et al. [12]. Considering its provenance, I will refer to this
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Figure 1.3: BWD problem data set consisting of 6000 two-dimensional sam-
ple points distributed in three dense regions on a 10 times lower density

background.

data as the BWD problem. The configuration presented in Figure 1.3 is a
typical example of concave clusters. The sample points in one group are
closer to sample points belonging to other groups than to some in their own
category. For example, the points in the upper semi-circle of the inner ring
are closer to the lower limit of the upper cluster than to the points on the
lower semi-circle of the ring. Our methods, as will be seen. build the clusters
based on local configuration of the data, hence the partitions correspond to

natural classes.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sepasl length distribution sepal width distribution

18 25

16

14 20

12 1S

10

8 10

6

q 5

2

o o ) P P 1 1

01 234 5S 67 8 910 01 23 4 5678 910
petal length distribution petal width distribution

18 25

16|

14 20

12

10 15

8 1

6 o

: 1L ﬂ llﬂﬂ

2

2 ol Les. AL M

0O 1 23 45 6 7 8 9 10 o 05 1 1.5 2 25 3

Figure 1.4: Histograms of the four attributes for iris flowers: sepal length.

sepal width, petal length, and petal width (all measured in cm).

To confront our algorithms with a “real life” problem, we have studied
the well-known iris data problem, perhaps the most famous test case in data
mining [20]. This data set was assembled by the statistician R. A. Fisher
in the 1930’s. The file is available in the Repository of Machine Learning
Databases at the University of California, Irvine, Department of Information

and Computer Science[21]. It contains fifty examples each of three types of

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3-0 T LI T T I T T

2501 SR i
L X X J [ J
[ X J [ J
20l --o .o. i
F = ) -...-.O..
B -
E 1'5 - a aca 28D ® —
[+ ] a a acn e
E ol
Q o an
1 o L anas aa —
(o]
0.5+ o =
aso O
OOC[&?JDO
0.0 | I L 1 i 1 - 1
1 2 3 4 5 6 7
petal length

Figure 1.5: Projection of the iris data on the plane spanned by petal length
and petal width. Open circles correspond to iris setosa, triangles to iris

versicolor and filled circles to iris virginica.

flowers: Iris setosa. Iris versicolor, and Iris virginica, for a total of 150 data
points. Each data point is characterized by four attributes, all expressed
in centimeters: sepal length, sepal width, petal length, and petal width.
Thus this is a four-dimensional clustering (or classification) problem and
not so easily visualized as the two-dimensional cases illustrated previously.
To better understand the data configurations we start by inspecting the
histograms of the four attributes, shown in Figure 1.4. Clearly. the first two

variables do not reveal the existence of an easily detectable structure in the
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Attribute Mean | Variance fraction of

(cm) | (cm®) | total variance

sepal length | 5.84 0.68 15%
sepal width | 3.05 0.19 4%
petal length | 3.76 3.09 68%
petal width | 1.20 0.58 13%

Table 1.2: Mean and variance of the four iris data attributes. The total

variance is 4.545cm?

data, only the last two components, petal length and petal width, determine
a visible separation between groups. Therefore a two-dimensional projection
of the iris data on the plane spanned by the attributes petal length and petal
width, shown in Figure 1.5, is a helpful tool in visualizing the structure of
the data set. One can see how the 50 iris setosa points form a well separated
group, while the other 100 flowers form two overlapping clusters. While
examining the histograms of sample point attributes might be a good idea
for low-dimensional data sets, the method becomes ineffective for data points
with numerous components. In these situations, a dimensionality reduction
technique could be a good start in understanding the data configuration.
Using the Principal Component Analysis for the iris data problem. we
reached the same conclusion. as stated above, that this 4-dimensional data

set has an intrinsic dimensionality of only 2. As is known. the main pur-
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Component Corresponding | Variance | fraction of
eigenvalue (cm®) | total variance
principal comp. 0.728 4.22 93%
second comp 0.230 0.24 5.3%
third comp. 0.037 0.08 1.8%
forth comp. 0.005 0.005 0.5%

Table 1.3: Eigenvalues and variances of the four zero-mean principal compo-

nents for iris data. The total variance is 4.545 cm?.

pose of PCA is to define a new coordinate system able to reflect the total
variance of the original data set in such a way that each new component
accounts for less and less of the total variance [22]. More explicitly. given
N vectors, characterized in D-dimensional sample space by the coordinates

Zy,I3....Ip, the variance (second moment) of each attribute ry is:

N
1
Var(zy) = N E (T — pi), (1.13)
=1

where y; is the mean (first moment) of attribute r;. The total variance of

the data set is the sum of all coordinate variances:

D 1 D N
Var = Z Var(zi) = i Z Z(l’ik ~ pe)?. (1.14)

k=1 k=1 i=1

This variance represents the dispersion of data points from the center of

symmetry of the data set. The new system of coordinates has to preserve this
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Figure 1.6: Projection of the iris data on the plane spanned by its first two
principal components. Open circles correspond to iris setosa, triangles to iris

versicolor and filled circles to iris virginica.

distance measure, hence it is obtained merely by a rotation (linear combina-
tion) of the original variables. The new coordinates we are looking for are
the eigenvectors of the covariance matrices (rotation conserves the trace) and
the corresponding eigenvalues are a measure of the magnitude of the variance
expressed along each eigenvector. Table 1.3 presents the variance of the iris
data along the four original attributes as well as the fraction of total vari-
ance expressed by each component. The total variance of 4.54cm? can also

be reflected in the principal component representation. Table 1.3 lists the
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variance of the iris data set along the four zero-mean principal components.

As one can see the first two eigenvalues are one to two orders of magni-
tude larger than the others, hence the corresponding eigenvectors (first two
principal components) reflect most of the variability of the iris data. Larger
variability along one component increases the chance, but does not guaran-
tee. that the component contains a more noticeable differentiation between
clusters. In Table 1.3 one can see that sepal length has a larger variance than
petal width. while the histograms in Figure 1.4 show a better differentiation
between groups along petal width. Projection of the iris data on the plane
defined by the first two principal components. presented in Figure 1.6, shows
the well defined iris setosa group and the overlapping clusters correspond-
ing to iris versicolor and iris virginica. The iris data file is a benchmark for
classification problems more than clustering problems due to the intertwined
groups of iris versicolor and iris virginica. Nevertheless, using this data file
as a test for a clustering procedure provides a verification of the clustering
technique’s ability to detect the “natural” number of clusters even if they
are entangled.

Using these three data sets, we can cover a wide variety of problems.
The first set of 50 two-dimensional data points offers a pedagogical example
that allows a good understanding of the models. The second file of 6000 two-
dimensional data points represents a verification of the methods’ efficiency as
well as their robustness to noise and their ability to deal with groups of dif-
ferent shapes and proximities. Finally, the last data set is four-dimensional.

therefore an actual problem that is not easily visualized.
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Chapter 2

Percolation Clustering

Algorithm

The algorithm represents a heuristic, non-parametric hierarchical technique
that emphasizes the similarity with the percolation process. The idea of ex-
ploiting the analogy with percolation phenomena in clustering techniques is
gaining more and more attention in recent publications. For example the
concept was used in the clustering of gene expressions {23]. The preceding
method is a non-hierarchical technique in which the data points have multiple
probabilistic memberships to different groups, mirroring only vaguely physi-
cal percolation. Our simulation focuses on monitoring the largest cluster size,
which is one of the core characteristic function of the system in percolation
theory. The discontinuities of this function indicate the “natural” number of

clusters in the analyzed data set.
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2.1 Introduction to Percolation Theory

Percolation models were used for the first time in the early 1940’s to de-
scribe the gelation of polymers [24, 25]. However, as a mathematical topic.
the theory was born the next decade with the contributions of Broadbent
and Hammersley [26]. Ever since. it progressed steadily and by the mid
1980’'s was already established as a broad inter-disciplinary topic [27]. After
a quieter period in the first half of the 1990’s. the interest for percolation
theory rose again due to its multiple applications and the developments in
computer technology. The second part of the last decade and the beginning
of the current one registered an avalanche of publications on the subject.
Mathematicians. physicists, computer scientists, engineers, chemists and bi-
ologists have joined interests in the study of this phenomenon and the phase
transitions associated with it.

Percolation is the structural modification experienced by thermodynami-
cal systems (systems with a large number of elements) when switching from
short-range to long-range connectivity between their components. The con-
figuration of these systems changes suddenly from a set of disconnected parts
to one large unitary ensemble. There are multiple natural phenomena that
resemble this description such as: the flow of fluids in a porous medium. the
spread of diseases in a population, the spread of fires in a forest. stochas-
tic star formation, and so on. The transition has the same characteristics
either when independent components suddeniy become connected by ran-

domly coupling neighboring elements. or. when the long-range connectivity
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of the systems disappears by arbitrarily cutting off some of the short-range
bonds. With this specification in mind we can add many more examples that
correspond to percolation models, for instance: the conductor-insulator tran-
sition in metal films. connected-disconnected networks. para-ferromagnetic
transition in diluted magnets. the liquid-gel to polymer transition. etc. [28]

All changes experienced by the physical systems mentioned above conform
to the general characteristics of a phase transition. They are sharp, in the
sense that the quantities describing the system encounter discontinuities and
occur when specific parameters reach critical values. In the proximity of the
transition. before reaching the discontinuity. the characteristic functions of
the system obey power laws whose exponents are universal constants. [ will
succinctly describe below the transition parameter and main characteristic
functions of percolating systems, focusing on the qualitative behavior in the
thermodynamic limit when boundary effects are negligible. The emphasis is
on the variation of system features versus percolation parameter rather than
on the finite-scaling effects.

Most percolation models deal with connectivity between objects placed
at random in a D-dimensional Euclidian space. Particular attention has
been given to the cases D = 2 and D = 3 due to their obvious applicability.
There are two main directions in percolation theory: one in which the system
components are placed at random on a lattice, called lattice percolation.
and the other one where the underlying background has no predetermined
structure and objects can be placed arbitrarily anywhere in space, named

continuum percolation.
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In both cases connectivity remains the main concern and is usually defined
based on adjacency. Two points are adjacent whenever they are nearest
neighbors on a lattice or are closer than a prescribed distance in a continuum
space. Therefore a natural parameter for percolation is one that controls
the distances between system components such as a generalized density or
a probability of lattice elements occupancy p. The critical value of this
parameter, p.. called the percolation threshold. varies wildly depending on
system characteristics: its space dimensionality and structure (continuum or
different lattice configuration), the shape of the system components (bonds
or sites for lattice percolation, spheres or cubes for continuum percolation).
definition of adjacency, etc. Despite the particulars of the different systems.
their characteristic functions behave similarly during transition. Let F be

such a function. then:
Folp—pl* when plp.

where the notation p T p. means p — p. and p < p.. The exponent .
called the critical exponent of F, is specific to the characteristic function
and has a universal value related only to the dimensionality of the space.
The percolation thresholds as well as the exact values of different critical
exponents for a variety of systems are a matter of ongoing research.

Lattice percolation has been studied for a longer time than continuum
percolation due to its topologically ordered structure which is easier to mon-
itor. Thus, before referring to continuum percolation. which is closely related

to our clustering algorithm, I will discuss the percolation parameter and three
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core characteristic functions of lattice percolation. In these models the con-
necting elements are occupied lattice sites or lattice bonds. The entire space
is seen as a grid whose components can take at random two Boolean values:
occupied or not. There are two types of lattice percolation: site and bond
percolation, both with similar attributes.

The variable that induces the percolation transition. namely the perco-
lation parameter p. is defined as the fraction of occupied (or unoccupied)
sites (or bonds). In the case of an infinite lattice (thermodynamic limit)
this concentration becomes the occupation probability. The critical value
of the percolation parameter varies with the lattice structure and shape of
connected objects. For example. in the case of site percolation in a two-
dimensional Euclidian space, p. = 0.50 is the theoretically established exact
value for a triangular lattice and p. » 0.5928 is the computed value for a
square lattice[29]. For the bond percolation case, again in two-dimensional
Euclidian space. p. = 0.34729 on a triangular lattice and p. = 0.5 on a square
one. In a three-dimensional space the critical value for site percolation on a
simple cubic lattice is p. = 0.3116. Current research is being done to esti-
mate more precise values of percolation thresholds. Rigorous mathematical
models are available only for two dimensions and in many cases their solu-
tions require the use of numerical methods. For higher dimensions we rely
on computer simulations [28].

The percolation transition is expressed as the variation of the system
characteristic functions versus the percolation parameter. One characteristic

function carefully studied is the mean cluster size, S(p), defined as the num-
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ber of elements per cluster averaged over all existing clusters [28]. At low
values of the concentration p, far below the percolation threshold, singletons
or small sized clusters fill the system. As p increases. larger and larger clus-
ters appear and we obtain a distribution of cluster sizes. As long as p < p.
this distribution, and therefore the mean cluster size, is dominated by rather
small or medium sized clusters. At p = p. numerous smaller clusters connect
in a network that spans the entire lattice and the main contribution to S(p.)
comes from the mazimal (largest) cluster size M(p.). When the maximal
cluster reaches the system limits for the first time some publications call it
the incipient percolation cluster and the trail that connects the lattice edges
is named first percolation path[29]. As the percolation parameter approaches
the critical value from below, the mean cluster size S(p) starts being domi-
nated by the maximal cluster size, M(p). Both grow rapidly and at p = p,
they encounter a discontinuity. The discontinuity amplifies with increasing
system size and develops into a singularity in the thermodynamic limit. This

behavior is expressed by a power law:

1

The critical exponent « is independent of the lattice structure and depends
only on the system dimensionality D. In the thermodynamic limit. above
the percolation threshold the maximal cluster size becomes infinite. hence so
does the average cluster size.

The second characteristic function that yields a similar behavior is the

correlation length, £(p), or the connectivity function, defined as the average
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distance between two components belonging to the same cluster [28]. For
simulation purposes an equivalent function can be used: the mean spanning
length, l.,4(p), which represents the spanning length averaged over all existing
clusters. The spanning length of a cluster is the maximum distance between
any two components:

l= max [[r;—rj|. (2.2)

i,)€cluster

For an infinite lattice in the proximity of the percolation threshold. the cor-
relation length is dominated by the spanning length of the maximal cluster

and behaves according to:

1
T o-p
Above p,. the connectivity function diverges. and in the thermodynamic limnit

£ when P T pe (2.3)

is infinite for any p > p.. The exponent v is another universal constant
dependent only on the dimensionality of the system.

To uncover yet another general trait of percolation we monitor the relation
between the mean cluster size and correlation length in an infinite lattice for
the sub-critical, critical and super-critical regimes. Let us consider a hyper-
cubic box of large length L, whose volume increases according to the space
dimensionality D as V ~ LP. Throughout the first stage, far below the
percolation threshold, the size (mass) of the average cluster trapped in the

box varies slowly for various large values of L as:
S(p, L) ~ log(L) for P < Pe. (2.4)

Because the space is almost empty, changing the box scale does not drastically

change the size of the average cluster. In other words. its mass grows very
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slowly with increasing volume, therefore its effective dimensionality is zero.
The critical regime begins when the system approaches percolation, for p < p.
but p big enough to create large clusters. At this point the average cluster
size starts being dominated by the maximal cluster. The largest cluster.
which will become the percolating cluster, does not have a uniform density
but rather a fractal structure due to the in-between empty cells. Considering
the same box of length L the maximal cluster size (mass) M(p) scales as

follows:

M(p,L)~L* for L <E&(p). (2.5-a)
M(p.Ly~L* for L>E&(p). (2.5-b)

where &(p) is the correlation length for the given concentration p and d is the
universal fractal dimension of the incipient percolating cluster. The above
equations show that when the box’s linear dimension is smaller than the
correlation length. the enclosed maximal cluster is seen as a fractal perco-
lating cluster. Due to its many empty cells the mass (size) of this structure
increases more slowly than its volume, according to equation (2.5-a). The
non-integer dimension d is a universal constant that depends only on the
space dimensionality D, but is independent of the lattice particularities. For
2-dimensional space d =~ 1.89 [28]. When the linear dimension of the box be-
comes of the same order of magnitude or larger than the correlation length.
the empty spaces in-between become relevant. The maximal cluster reaches
its limits inside the box and its mass remains constant for any box length as

expressed in equation (2.5-b). When the concentration p = p.. the correla-
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tion length reaches an order of magnitude comparable to the infinite lattice
linear dimension and the maximal cluster becomes the percolating cluster.
No matter how large the box length, L, the maximal cluster inside has a frac-
tal dimension d. In the super-critical regime, when the parameter p exceeds
the critical value p., the maximal cluster fills the lattice almost uniformly

and its size (mass) increases similar to its volume:
M(p.Ly~L°? for L — . (2.6)

For an infinite system many absolute quantities, such as the average clus-
ter size or the correlation length. diverge above the percolation threshold.
Therefore, normalized functions would be more appropriate to describe the
system’s super-critical behavior. Such a characteristic function is the prob-
ability of percolation P(p) for a given concentration p. It corresponds to
the normalized maximal cluster size and is defined as the fraction of the en-
tire system occupied by the spanning cluster. For a two-dimensional square
lattice of size L:

P(p) = - I (2.7)

In the thermodynamic limit, P(p) is the probability that a randomly selected
lattice site (or bond) belongs to the spanning cluster. This quantity is also
called the strength of the infinite cluster. P(p) plays the role of an order
parameter since it is zero for p below p. when there is no spanning cluster.
and becomes a positive value at the percolation threshold (p = p.) when the

first percolation path appears. The increase is abrupt and near threshold
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P(p) is given by a power law:

P(p)~(-p)’ for plp.. (2.8)

where p | p. means that occupation probability approaches the critical value
from above (p — p. and p > p.). When all occupied sites (or bonds) are
interconnected P(p) = p and when the entire lattice is occupied P(p) = 1.

From the discussion above. the maximal (or average) cluster size and
correlation length are features that describe the system in the sub-critical
regime, while P(p) is a critical and super-critical attribute. The exponents
v. v. 3 and the fractal dimension d of the percolation cluster are universal val-
ues. Analogies between percolation and thermally induced phase transitions.
such as a para-ferromagnet or a liquid-gas transition. reveal the universality
of critical phenomena behavior. The concentration p corresponds to tem-
perature T. with the observation that they play an inverse role. Percolating
systems become connected above p. and a thermal system becomes ordered
(ferromagnetic or liquid) below T.. The mean cluster size S corresponds to
a susceptibility x or a compressibility K, since it describes a local order as
opposed to the average disordered system. The strength of the infinite clus-
ter (percolation probability) P corresponds to the magnetization M or to
the difference between liquid-gas densities, given that all these quantities are
zero on one side of the phase transition {28, 30].

The last few years registered an increased interest in continuum perco-
lation models. The objects in this case are equal sized geometrical shapes

(spheres. cubes or cylinders) built around Poisson distributed points in a
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uniform D-dimensional Euclidian space. The objects can be impenetrable or
can overlap. Such a model is the well-known “Swiss cheese” in which equally
sized void spheres of radius r appear at random in a system. The spheres
can overlap and percolation occurs when the system becomes disconnected.
In continuum percolation the role of the occupation probability. p, is taken
by the fraction of occupied (or void) spaces ¢. The percolation transition
is described by the variation of system characteristic functions versus 0. As
in the lattice percolation case the critical value of the percolation parame-
ter ¢. depends on the system particularities. These percolation thresholds
represent an area of very active research. Recent publications present these
values for a two-dimensional and three-dimensional space where the connect-
ing objects are squares or cubes built around Poisson distributed points. For
squares aligned with the axes ¢. ~ 0.66 and for randomly oriented square
¢. ~ 0.62. In three dimensions for aligned cubes: ¢. ~ 0.28 and for ran-
domly oriented cubes ¢. ~ 0.22 (noticeably smaller). The critical volume at
percolation threshold for spheres built around Poisson distributed points is

@ ~ 0.29 only 4 % larger than the critical value for aligned cubes [31].

2.2 Description of the Algorithm

Our clustering method represents a new approach to the nearest-neighbor
algorithm. By exploiting an analogy with the percolation process we add
insight into the clustering procedure and transform it from a parametric

technique into a non-parametric one. Applied to an unknown set of data the
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Figure 2.1: Seven two-dimensional data points grouped into roughly two clus-
ters of sizes four and three. The first cluster (the leftmost one) is completely

connected and the second cluster (the rightmost) has not yet linked fully.

“Percolation Clustering Algorithm” determines automatically the number of
clusters and their location using no a priori assumptions.

The algorithms currently utilized in the study of continuum percolation
use equally sized geometrical objects such as squares [31]. disks [32]. or thin
rectangles [33] in two dimensions and spheres, cubes or ellipsoids of revolution
in three dimensions [31]. These objects are not placed completely randomly
in space, but they are generated such that their centers form a Poisson distri-
bution. In contrast, clustering procedures aim to locate unevenly scattered
groups of points, therefore our technique utilizes objects of changing size.

We imagine data points as the centers of initially small hyper-spheres

expanding in a D-dimensional space. Each sphere “swells”. increasing its
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radius until it touches other spheres and “sticks” to them. This is the grow-
ing scheme. A group of mutually connected spheres forms a cluster. A
two-dimensional example with seven data points grouped into two clusters
is illustrated in Figure 2.1. The quantity we are primarily interested in is
the cluster size, defined as the number of sample points in each cluster. At
the beginning only the closest points are linked and cloudlike structures start
growing in different areas of the sample space. As the spheres keep augment-
ing their volume. more and more data points connect. Once a “chain” of
such spheres spans an entire cluster, percolation occurs and the cluster size
remains constant until a group of mutually connected spheres merges with
a neighboring cluster. When two clusters connect, a sudden jump in cluster
size can be detected. Coalescence continues until all data points are grouped
in one large, final cluster. The analogy with the percolation phenomenon
allows us to sense the changeover that occurs when a cluster gets “locked in
place”. This transition can be detected in two ways. First, by monitoring
cluster size as a function of distance between connected points. we notice a
plateau once the cluster is completely formed, followed by an abrupt jump
when the cluster merges with another cluster. The second way is to examine
the discontinuities in the first derivative of cluster size with respect to dis-
tance between connected points. In this case. the growth rate of cluster size
encounters a sharp peak when two clusters connect or when a large cluster
gets “locked in place”.

The successive “swelling” and joining of data points is accomplished by

browsing the ascending ordered list of distances d;; between sample points.
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For each distance in the list, the two adjacent points are connected. We
monitor the size of the largest cluster as a function of distance between sample
points. In fact, for a more detailed analysis of the data, the algorithm can
output the sizes of the first, second, third or any chosen number of largest
clusters.

The binary distances used in our simulations are Manhattan distances
defined by equation (1.3) and the Euclidean norm described in equation
(1.2). Obviously, the Euclidean distance corresponds to the image of an ex-
panding hyper-sphere while the Manhattan distance defines enlarging hyper-
parallelepipeds around data points. In a low-dimensionality sample space
(for well-defined clusters) both metrics generate basically equivalent results
and for computational efficiency reasons the Manhattan distance is a more
convenient choice. A number of partitionings obtained by means of the Man-
hattan distance were reconfirmed using the Euclidean norm.

The bottleneck of our algorithm is building the ordered list of distances
d;; between points. Given a data file of V sample points, the total number

N(N -1 :
‘(q—), hence the number of elements in

of distances between them is n =
the distances list is of order N2. Note that all sample points end up being
grouped in one final cluster before the expanding spheres around data points
reach radii comparable to the largest distances between samples. Once the
largest cluster contains all data points the simulation ends. Therefore. a
simple way to limit the number of elements in the distance list is to insert

only the values smaller than a threshold. The threshold has to be chosen

such that by browsing the ascending ordered list of distances, at the end the
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largest cluster contains all of the sample points. This value is not known
beforehand and has to be tuned for each data set. The cut-off distance is
the only adjustable parameter of the Percolation Clustering Algorithm and
it has an auxiliary character in that its value has no bearing on the final
clustering results. In our calculations the threshold was typically less than

one-half of the average distance between sample points.

2.3 Computational Details

Before we finish the general description of the method. it is useful to present
the technical detail