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Three new approaches to the clustering of data  sets are presented. They 

are heuristic methods and represent forms of unsupervised (non-parametric) 

clustering. Applied to an unknown set of data  these methods automati­

cally determine the number of clusters and their location using no a priori 

assumptions. All are based on analogies with different physical phenomena.

The first technique, named the Percolation Clustering Algorithm, em­

bodies a novel variation on the nearest-neighbor algorithm focusing on the 

connectivity between sample points. Exploiting the equivalence with a per­

colation process, this algorithm considers data  points to be surrounded by 

expanding hyperspheres, which bond when they touch each other. Once a 

sequence of joined spheres spans an entire cluster, percolation occurs and the 

cluster size remains constant until it merges with a neighboring cluster.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The second procedure, named Nucleation and Growth Clustering, exploits 

the analogy with nucleation and growth which occurs in island formation 

during epitaxial growth of solids. The original data points are nucleation 

centers, around which aggregation will occur. Additional “ad-data” that are 

introduced into the sample space, interact with the data points and stick if 

located within a threshold distance. These “ad-data” are used as a tool to 

facilitate the detection of clusters.

The third method, named Discrete Deposition Clustering Algorithm, con­

strains deposition to occur on a grid, which has the the advantage of com­

putational efficiency as opposed to the continuous deposition used in the 

previous method. The original da ta  form the vertexes of a sparse graph and 

the deposition sites are defined to be the middle points of this graphs edges. 

Ad-data are introduced on the deposition site and the system is allowed to 

evolve in a  self-organizing regime. This allows the simulation of a phase 

transition and by monitoring the specific heat capacity of the system one 

can mark out a “natural” criterion for validating the partition.

All of these techniques are competitive with existing algorithms and offer 

possible advantages for certain types of data distributions. A practical appli­

cation is presented using the Percolation Clustering Algorithm to determine 

the taxonomy of the Dow Jones Industrial Average portfolio. The statistical 

properties of the correlation coefficients between DJIA components are stud­

ied along with the eigenvalues of the correlation matrix between the DJIA 

components.
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Chapter 1

Introduction

Today's interest in data mining is highly motivated by the explosion of data 

flooding the world, overwhelming individuals as well as large organizations. 

All quantitative sciences gather their forces in the quest of leveraging the 

“Big Bang” of data content into structured information and useful knowledge. 

Undoubtedly computer development fueled this explosion and at the same 

time offers the assistance needed to master it.

The challenge is that, although machines outperform the human brain 

when it comes to simple repetitive operations, enabling artificial systems to 

process da ta  is not a trivial job. The brain can deal with fuzzy, noisy and even 

inconsistent information. It is flexible, robust and fault tolerant [lj. Even 

simple biological creatures perform fundamental tasks such as perception, 

classification and recognition. Training computers to mirror this biological 

performance requires addressing the problems in a rigorous, formal manner. 

Physics enriches us with an impressive library of concepts and mathe-

1
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matical tools whose highly abstract forms make them applicable to a wide 

variety of problems. The similarity between subjects is also encouraging. For 

instance, statistical physics studies systems with a very large number of ele­

ments where stochastic (thermal) fluctuations generate macroscopic effects. 

Data mining addresses the problem of revealing the structures and correla­

tions hidden by noise in large data sets. Therefore, in recent years there 

has been an increased interest in adapting numerical and analytic techniques 

from statistical physics to different areas of data mining.

The first step in the cognitive process when we have little a priori knowl­

edge about the structure of data or the information we are looking for is to 

cluster data: divide the data set into a small number of subgroups (clusters) 

in such a way that the elements within the same subgroup are more similar to 

each other than to elements from all other different subgroups [2 ]. Clustering 

can be considered the archetypical data mining problem, closely related to 

unsupervised learning and pattern recognition.

Once the clustering problem is defined, a number of fundamental issues 

arise. We have to describe a measure of similarity (or dissimilarity) between 

sample points as well as a criterion to choose the best partitioning of the 

data set. These tasks are inherently related to calculations combining com­

ponents of data points and involve underlying issues of measurement theory. 

General aspects of the clustering procedures, their classification, as well as 

the major directions engaged today are presented in the following sections. 

The last part of this introductory chapter describes the main data files used 

throughout the dissertation.

2
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The following chapters have a more definite aim, i. e. to introduce three 

new clustering techniques. The heuristic approach is based on analogies 

to well-studied physical processes. The algorithms have the advantage of 

simplicity and computational efficiency over existing methods and provide 

competitive results.

1.1 Background

Clustering, being an attempt to partition data sets into groups of similar 

points, becomes a well-defined problem once two functions are chosen: the 

similarity (or dissimilarity) between two sample points and the criterion (cost 

function) used to evaluate different partitions [2]. Each of these two functions 

can be selected in many different ways according to the nature of the data  

and any a priori knowledge we have about it.

1.1.1 Sim ilarity Function

I will start by discussing the first of these two issues: the measure of similar­

ity between two sample points. The only constraint on this binary similarity 

function is that it has to be symmetric s { i , j ) = s ( j ,i) .  Consider a set of N  

sample points with an identical number of attributes D  in a standard spread­

sheet set-up, as presented in Table 1 .1. All attributes have to be converted 

into features by encoding them in a numerical format. A data point can be 

seen as a vector in a D-dimensional space, where the coordinates correspond 

to its features. Before attempting to combine the vector coordinates, we

3
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Sample Point Attribute; Attribute* Attributeo

Xl x n X  lit X l D

Xi Xu x  Ik X i D

xn xn  i X.Nk X N D

Table 1.1: A set of A sample points with an identical number of attributes 

D in a standard spreadsheet format.

should be aware that the space is not necessarily continuous. The categorical 

features (such as color, sex, group membership, etc.). even under numerical 

format, cannot be ordered. In a spreadsheet format they are represented as 

numbers using a specified code, but one cannot define a distance between 

unordered numerical values. In such cases, one can choose a non-metric sim­

ilarity function between two sample points, x, and x_, as, for example, the 

normalized inner product of the two vectors:

s(x̂ )=s Im '
Such a similarity measure, or variations of it. are frequently used in biological 

taxonomy or information theory’ [2 ].

This dissertation focuses on data sets in which all feature values can be 

ordered, which means that for two different values, a! and a2. of any attribute 

a one can always define the operators ai > a2 or at < a-2 . Therefore, a norm.

4
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or distance, can be defined in feature space and can be used as a similarity 

measure, s. For two sample points, x / and Xj, s becomes

(1.1) should be invariant to transformations natural to the problem. Thus the 

metric has to be selected based on previously known properties of the data.

respectively, in a uniform isotropic feature space. In this case the binary 

Euclidean distance:

is a good choice for a similarity measure, since it is invariant to translations 

and rotations of the coordinates. However, we can not always assume the 

isotropy of feature space. Imagine, for example, th a t data points represent 

individuals whose characteristics are height, income, blood pressure, num­

ber of children, etc. A rotation of the original coordinates would generate 

axes with no real meanings, a dissimilarity along any of these axes does not 

correspond to any easily interpreted difference between individuals. When 

we have little a priori knowledge about the properties of sample attributes, 

an unassuming way of combining vector coordinates could be advantageous. 

For instance, the M anhattan distance defined as:

s x ,,X j  — ||x i xjl|- ( 1. 1)

The similarity function (distance) between two vectors described by equation

Consider two vectors x, and Xj with attributes x tk and x jk (k = 1.........D).

D

( 1 .2 )

D

(1.3)

5
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can then be used as a similarity function.

In a low-dimensional sample space both metrics usually generate basically 

equivalent results for well defined clusters. The differences between these 

norms, as in fact differences between any other norms, increase with the 

dimensionality of the sample points.

Since we tested our algorithms on low-dimensional data files, the Manhat­

tan distance is as good as any other norm and for computational efficiency 

reasons we prefer it since it is faster to evaluate. Throughout the rest of the 

dissertation we refer to it under the simplified notation dij, unless otherwise 

specified. The Euclidean norm was used to study the robustness of some of 

the partitions obtained with the M anhattan distance.

No m atter which metric is used to measure the similarity between two 

vectors, it involves combining the values of their coordinates. This raises a 

scaling problem, since features of different magnitudes should have equivalent 

weight in calculating a binary distance. Some norms, like the Euclidean 

distance, for instance, are invariant to rotations and translations but sensitive 

to other linear transformations. The M anhattan distance, on the other hand, 

is susceptible to any linear transformation of the coordinates. A general 

distortion of feature space is not a concern unless it is natural to the problem. 

However, a change in the units of measured values should have no influence on 

clustering results. This is why in many cases data  normalization is required 

before any clustering procedures are performed.

6
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1.1.2 Norm alization

By normalization we understand the scaling of all features to a specified 

range (usually [0 . 1] or [—1 . 1]), so that all of them have equivalent weights. 

Several normalization techniques are presented below.

Consider a set of N  sample points where the feature x k has the values:

XL*. x,vfc and let x/t|max. Xfc|min. x k and sk be the maximum, minimum.

mean and standard deviation, respectively, of this feature. The new scaled 

values x'ik corresponding to x lk can be defined as:

r _  X j k  ~  X k \m in  . .

Xfcl  Xtl • '^ k \ m a x  x fc |m in

The transformation expressed by (1.4) is called range normalization and it 

changes the feature’s span from [x/t|m;n,Xfc|max] to [0,1]. Another option, is 

to convert all values such that |x 'fc| ^  1 by:

/ x ik
X'k = \ ^ t ~ -  (L5)I**' j k \ m a x

where |xjfc|max is the maximum absolute value of attribu te  k  over all sample 

points. Alternatively, the scaling:

/ Xvfc Xi*
x’ik = - ^ - ^  (1.6 )

makes all the normalized values have zero mean.

Since the minimum, maximum and average values are drastically affected 

by outliers, i. e. the elements in the tails of the distribution, a better choice 

is a percentile normalization, as given, for example, by:

x [ k  =  , ( 1 7 )  

Zfc|97.5 ~  -Cfc|2.5

7
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where x fc|2.5 and Xfc|g7.5 are the 2.5 and the 97.5 percentiles, respectively. This 

conversion scales data so that 95% of the values are between 0 and 1.

The most common normalization option is to make all features have zero- 

mean and unit variance:

j  Z l* .  (i .8 )
Sk

This way one can easily compare the distribution of the Xk feature to the 

unit normal distribution.

Normalization, like any data transformation, corrupts to a certain degree 

the original data configuration. Therefore this procedure has to match the 

objective of the study. For example formulas (1.4). (1.7) or (1.8) give com­

parable weight and similar variability to all features and make them suitable 

for the feature composition used to calculate a norm. Reducing all features' 

standard deviations to a similar range might diminish the natural difference 

between groups of sample points [2]. When data variability is under study, we 

need to preserve it throughout normalization, hence equations such as (1.5 ) 

and (1 .6 ) are preferable alternatives.

1.1.3 Optim ization Criteria

Once a distance measure is defined, the second important issue of any clus­

tering technique is to select the optimization criterion (cost function) used to 

evaluate the best partitions of the sample points. This is usually a similarity 

function between sets of points and is based on a binary similarity function 

between sample points. Having a metric described by equation (1.1), several

8
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examples of cost functions to be minimized (or maximized) during the clus­

tering procedure are presented below. Given two sets. H \ and H i, of vector 

points { x i , .. .,Xn, } and {xV . . . , x /„2} , respectively, two possible criterion 

functions are: the average distance

One of the difficulties encountered in clustering problems is th a t a similarity 

function (distance) between two points can hardly account simultaneously 

for the closeness and the interconnectivity among sets of points. Some cost 

functions emphasize the closeness between groups of points, others stress the 

connectivity between classes. Optimization criteria based on cumulative dis­

tances, such as the one in equation (1.9), reflect well the interconnectivity 

between sample points, but tend to favor larger data groups and fail for sets 

which contain large variations in cluster sizes. They also give erroneous re­

sults for concave shaped clusters, such as shown in Figure 1.1, i. e. when 

points in a given cluster are closer to points in another cluster. For example, 

the upper cluster of Figure 1.1, contains the points C, D. and E out of which 

C and E are farther apart from each other than point A is from D. There­

fore a clustering algorithm based on cumulative distances might incorrectly 

partition the upper and middle clusters. The same statem ent is true if one 

considers the points F and H with respect to points B and G with the above

(1.9)

and the minimum distance between the two sets

d m m ( W l . W 2 ) mm x  — x
xeHux'eHi

( 1. 10)

9
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Figure 1.1 : Three two-dimensional clusters illustrating the problem with 

concavity and interconnectivity.

argument. In this type of situation, an optimization criteria which empha­

sizes connectivity more than closeness would find the correct partitioning of 

the data.

Methods based on the cost function described by equation (1.10) define 

the similarity between two clusters as the similarity of the closest pair of 

points belonging to the different clusters. They underline the closeness be­

tween groups and can find clusters of arbitrary shapes and sizes but are highly 

susceptible to noise and outliers. Improved performance can be achieved 

when a filtering procedure is performed before clustering. By filtering we 

understand eliminating the background points and keeping only the data 

that have an average distance to the first k nearest neighbors smaller than a 

user defined threshold. Nevertheless these techniques fail to correctly parti­

tion the data sets that contain clusters of different densities. Other methods

10
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strive to obtain correct results by normalizing each binary distance via a 

specific local length whose value is defined based on the local mean k  nearest 

neighbor distance.

Some new techniques define elaborate dynamic similarity functions. For 

example. Chameleon [5]. a hierarchical agglomerative method, uses a sim­

ilarity function between sets of points that accounts simultaneously for in­

terconnectivity and closeness. The algorithm starts by building a sparse 

graph between data  points in such a way that data items that are far apart 

are completely disconnected. Each edge of the graph is weighted with the 

similarity between the two connected data points. An absolute internal in­

terconnectivity. EC , is defined for each group of points as the sum of all edge 

weights crossing the mid-cut bisection that splits the cluster into two roughly 

equal parts. Considering two groups of points Cx and C j, the relative inter­

connectivity. R I, between them is defined as the absolute interconnectivity 

normalized by the average internal interconnectivity of the two groups:

m i r  o  \E C ^ i ,C j) \  . . . . .
* " \{EC (C \) + EC (C j)) * ' *

EC (C t.C j) is the absolute interconnectivity between the two clusters, defined 

as the sum of all the edge weights that connect the two groups, and EC (C t) 

and EC{Cj) are the internal interconnectivity of each group respectively.

Also, an absolute closeness, S E C  is defined for each group as the average 

of the edge weights that cross the mid-cut bisection (as opposed to the sum 

of the edge weights for interconnectivity). A relative closeness, RC. for the

11
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clusters C< and Cj, is defined as:

RC(C„C,) = — j^i---------S. E £ i€ i' CA ---------------- , (1.12)
+ icgfcs£C(c,)

where SEC(Ct,Cj ) is the absolute closeness described as the average weight 

of all the vertices that connect the two clusters. |Ci| and IC2 I are the total 

number of vertices in each cluster, and. correspondingly, SEC(Ci), SEC(Cj) 

are the internal closeness for the two groups. Using a normalized intercon­

nectivity and closeness between the two merged groups of points accounts 

for the nature of each individual cluster and makes the similarity function 

between sets a dynamic one. Chameleon selects a pair of clusters to be 

linked by maximizing the function R I{C \,C 2 ) x R C (C \.C 2 )a where a  is a 

user specified value. When a  > l a  higher significance is given to the relative 

closeness and for a  < 1 the relative interconnectivity is emphasized. Good 

results have been reported for image processing, except that the dynamic 

modeling of cluster similarity is applicable only when each cluster contains a 

large number of items, such that the quantities defined by equations (1.L1) 

and (1 .1 2 ) can be properly determined.

1.1.4 Classification o f C lustering Techniques

In spite of their variety, clustering techniques can be divided in two cate­

gories: non-hierarchical and hierarchical. The first type of approach starts 

by subjectively partitioning the N  sample points among a given number of 

C clusters. The members of the clusters are later redistributed according 

to an iterative optimization of the appropriately chosen cost function. On

12
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the other hand, hierarchical clustering techniques group the points according 

to a tree-like scheme: whenever two sample points are assigned to the same 

cluster at a given level, they will remain together at all parent clustering 

levels.

An example of a non-hierarchical approach is the k-means method. It was 

proposed by MacQueen [3] as a simple heuristic method for performing clus­

tering. It is an iterative procedure, which starts with an initial partitioning 

of the dataset into k  clusters either based on a priori information regarding 

the data or else randomly selected. Next, the centroids (average positions) 

of each cluster are calculated, data points are reassigned to the centroid that 

is closest to them and a new set of centroids is calculated. Other variations 

of the method replace the abstract centroid point by the medoid which is 

the data point closest to the center of the cluster. The procedure is repeated 

until no more reassignments occur. The clustering criterion, which is the 

function being optimized, is the sum of the distances between each element 

and the nearest centroid (or medoid). This kind of aggregate cost function 

is similar to the type described by equation (1.9) and suffers the same lim­

itations. The k-means algorithm is a form of hill-climbing, since it starts 

with a certain configuration that it systematically improves until no further 

improvements are possible by small changes. In practice this algorithm per­

forms well for clusters that are hyper-ellipsoidal and have similar sizes, but 

it cannot find concave shapes or groups of very diverse size. There are two 

other key drawbacks to this approach. First, the number of clusters must be 

known in advance, or else the algorithm must be run for different /> values

13
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and a choice between the various clusterings must be made. The second 

drawback is that there is no guarantee that the algorithm will converge to 

the global minimum, but instead, like all hill-climbing techniques, it may 

lead to a local minimum [4], depending on the initial partitioning.

Regarding the hierarchical clustering algorithms there are two methods: 

divisive and agglomerative. The first category begins by placing all N  data 

points in one cluster and then, following the chosen optimization criterion, 

splits the cluster in two, three and so on, up to the desired number of clusters. 

Alternatively, agglomerative methods start with a number of clusters equal 

to the number of sample points and successively merge the clusters [2]. The 

hierarchical agglomerative clustering technique that uses equation (1 .10) to 

find the nearest cluster to be merged is called the nearest-neighbor [2 ] or 

single link [5] algorithm.

An important observation, regarding all the methods mentioned above, is 

that they have a parametric modus operandi, in the sense that the number 

of clusters and even their locations are prior knowledge included as initial 

parameters in these clustering procedures. Clearly, for an unknown data 

set. a desirable algorithm is one that provides a '‘natural'1, non-parametric 

way of partitioning the sample, based solely on the inner structure of the 

data. There are exhaustive methods that effectively search through the entire 

solution space and are therefore guaranteed to find the global optimum, but 

such methods tend to be very time-consuming, since they involve essentially 

an exponential search [6 ], and they are consequently only applicable to small 

data sets.

14
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1.2 Clustering Techniques Based on Analo­

gies with Physical Phenom ena

Several techniques have been proposed over the years to avoid the local min­

imum problem. Some of these are based on the idea of simulated annealing 

[7, 8 ] while others use genetic algorithms [9, 10, 11]. All have the core idea of 

allowing “uphill" moves so that the search procedure may escape from local 

minima and eventually end up in the global minimum.

Here we are particularly interested in two heuristic methods that perform 

clustering by exploiting analogies from statistical physics. The first one. 

which borrows ideas from simulated annealing [7], is the Super-Paramagnetic 

Clustering method of Domany and collaborators [12, 13, 14. 15], for which 

they were granted a US patent [16]. The central idea of this method is to 

mimic, with methods from statistical physics, a cooling process to allow the 

da ta  points to group themselves in clusters as the temperature is lowered. 

To this end one associates with each data point a Potts spin [17], a vector 

th a t can be pointing in any one of q directions. Here q should be chosen 

larger than the number of clusters present. A group of adjacent parallel 

Potts spins forms a cluster. The spins interact with each other like tiny 

magnets, with the interaction strength increasing with decreasing distance. 

Thus nearby spins will tend to align with each other to minimize their energy. 

However, at finite temperature this ordering tendency is offset by entropic 

effects which will tend to destroy the order. By starting the simulation at 

high temperature (disordered spins, no clusters) and slowly cooling (using a

15
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Metropolis algorithm [18] one finds that the system undergoes a number of 

phase transitions. At each phase transition tem perature a cluster of spins 

"snaps’’ into alignment. By monitoring the number of aligned spins and 

various statistical fluctuation functions, one is able to detect the number 

of clusters and their location. This method has been applied to a wide 

range of test data and performs very well in practice [12. 13. 14. 15]. It 

improves over the k-means method in that the number of clusters is obtained 

automatically as it emerges during the cooling process and that trapping in 

local minima does not occur if the cooling proceeds slowly enough. However, 

the calculations tend to be quite time consuming and may necessitate some 

fine-tuning before the optimal parameters (initial temperature, interactions, 

cooling schedule, etc.) can be determined.

Another recent physical approach is also based on putting physical objects 

at the data points and exploiting emergent collective behavior. This is the 

inhomogeneous chaotic map method of Angelini et al. [19]. In this technique, 

a chaotic map is associated with each data point and short-range interactions 

between data points are introduced, with coupling strength decreasing with 

distance. It is known that such chaotic maps, when coupled together, tend to 

synchronize their behavior. The maps are iterated over time until they reach 

a stationary' regime, which can be shown to be independent of the initial 

conditions since it is a macroscopic attractor. In this regime one can deter­

mine the mutual information between the various maps, which is a measure 

of the amount of correlation between them. From this mutual information 

function, the clusters are identified as follows. A graph is constructed by

16
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linking any two data points whose mutual information is above some thresh­

old value. The clusters then correspond to the linked components of this 

graph, which can be easily determined. By varying the threshold value one 

can perform hierarchical clustering. This method was tested on a number of 

problems and was found to perform quite well. Slightly better performance 

than superparamagnetic clustering was claimed in certain cases. Moreover, 

the method does not involve a sweep over temperature which means it is 

considerably faster than techniques based on an annealing scheme. This ap­

pears to be quite a promising technique although further test cases will have 

to be studied to judge its efficacy on a wide range of applications. There is 

still some fine-tuning of parameters involved, which may be a drawback in 

complex situations. It is to be noted that in this method too, the number 

of clusters emerges from the calculation, rather than being fixed in advance 

and that trapping in local minima does not occur due to the independence 

of the final state of the initial conditions.

1.3 D ata Files

Before presenting the new clustering algorithms which form the core topic of 

this dissertation, I will take a moment to describe the main data files used 

to develop and test our techniques. There are several other files employed 

throughout the report, but the following ones are repeatedly referred to. In 

order to avoid redundancies, they are presented only once in this section.

The first example is a simple two-dimensional “toy” problem whose pur-

17
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Figure 1.2: D ata set of 50 two-dimensional sample points grouped in two 

circular clusters of different densities, set one unit apart.

pose is to illustrate the concept and general algorithm behavior. The data file 

consists of 50 sample points grouped into two circles of equal radii (R = 1) 

and different densities. The smaller cluster, centered at the origin, contains 

19 points and the larger one 31 points, as shown in Figure 1.2.

To test our algorithm on sensibly complicated examples we used a sec­

ond set of 6000 points. The original file, obtained courtesy of Dr. Marcelo 

Blatt, contains two-dimensional sample points distributed in three irregularly 

shaped dense areas on a diluted background, as presented in Figure 1.3. All 

dense regions have the same uniform distribution, which is 10 times larger 

than the density of the background. The data, crafted as a test for the 

Super-Paramagnetic Clustering procedure, was used for the first time in the 

article by Blatt et al. [12], Considering its provenance. I will refer to this

18
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Figure 1.3: BWD problem data set consisting of 6000 two-dimensional sam­

ple points distributed in three dense regions on a 10  times lower density 

background.

d a ta  as the BWD problem. The configuration presented in Figure 1.3 is a 

typical example of concave clusters. The sample points in one group are 

closer to sample points belonging to other groups than to some in their own 

category. For example, the points in the upper semi-circle of the inner ring 

are closer to the lower limit of the upper cluster than to the points on the 

lower semi-circle of the ring. Our methods, as will be seen, build the clusters 

based on local configuration of the data, hence the partitions correspond to 

natural classes.
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Figure 1.4: Histograms of the four attributes for iris flowers: sepal length, 

sepal width, petal length, and petal width (all measured in cm).

To confront our algorithms with a “real life” problem, we have studied 

the well-known iris data problem, perhaps the most famous test case in data 

mining [20]. This data set was assembled by the statistician R. A. Fisher 

in the 1930!s. The file is available in the Repository of Machine Learning 

Databases at the University of California, Irvine, Department of Information 

and Computer Science[21]. It contains fifty examples each of three types of
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Figure 1.5: Projection of the iris data on the plane spanned by petal length 

and petal width. Open circles correspond to iris setosa, triangles to iris 

versicolor and filled circles to iris virginica.

flowers: Iris setosa. Iris versicolor, and Iris virginica, for a total of 150 data 

points. Each data  point is characterized by four attributes, all expressed 

in centimeters: sepal length, sepal width, petal length, and petal width. 

Thus this is a four-dimensional clustering (or classification) problem and 

not so easily visualized as the two-dimensional cases illustrated previously. 

To better understand the data configurations we start by inspecting the 

histograms of the four attributes, shown in Figure 1.4. Clearly, the first two 

variables do not reveal the existence of an easily detectable structure in the
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Attribute Mean Variance fraction of

(cm) (cm2) total variance

sepal length 5.84 0.68 15%

sepal width 3.05 0.19 4%

petal length 3.76 3.09 6 8 %

petal width 1 .20 0.58 13%

Table 1.2: Mean and variance of the four iris data attributes. The total 

variance is 4.545 cm2

data, only the last two components, petal length and petal width, determine 

a visible separation between groups. Therefore a two-dimensional projection 

of the iris data on the plane spanned by the attributes petal length and petal 

width, shown in Figure 1.5. is a helpful tool in visualizing the structure of 

the data set. One can see how the 50 iris setosa points form a well separated 

group, while the other 100 flowers form two overlapping clusters. While 

examining the histograms of sample point attributes might be a good idea 

for low-dimensional data  sets, the method becomes ineffective for data points 

with numerous components. In these situations, a dimensionality reduction 

technique could be a good start in understanding the data  configuration.

Using the Principal Component Analysis for the iris data  problem, we 

reached the same conclusion, as stated above, that this 4-dimensional data 

set has an intrinsic dimensionality of only 2. As is known, the main pur-
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Component Corresponding

eigenvalue

Variance

(cm2)

fraction of 

total variance

principal comp. 0.728 4.22 93%

second comp 0.230 0.24 5.3%

third comp. 0.037 0.08 1 .8%

forth comp. 0.005 0.005 0.5%

Table 1.3: Eigenvalues and variances of the four zero-mean principal compo­

nents for iris data. The total variance is 4.545 cm2.

pose of PCA is to define a new coordinate system able to reflect the total 

variance of the original data set in such a way that each new component 

accounts for less and less of the total variance [22]. More explicitly, given 

N  vectors, characterized in D-dimensional sample space by the coordinates 

x i , Xo —  xq , the variance (second moment) of each attribute x^ is:

1 N
Var(ik) =  -  /it)2, (1.13)

i= 1

where /z*. is the mean (first moment) of attribute x*.. The total variance of

the data set is the sum of all coordinate variances:
D j D N

Var — Var(xk) =
fc= i fc=i i=i

This variance represents the dispersion of data points from the center of 

symmetry of the data set. The new system of coordinates has to preserve this
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Figure 1.6: Projection of the iris data on the plane spanned by its first two 

principal components. Open circles correspond to iris setosa. triangles to iris 

versicolor and filled circles to iris virginica.

distance measure, hence it is obtained merely by a rotation (linear combina­

tion) of the original variables. The new coordinates we are looking for are 

the eigenvectors of the covariance matrices (rotation conserves the trace) and 

the corresponding eigenvalues are a measure of the magnitude of the variance 

expressed along each eigenvector. Table 1.3 presents the variance of the iris 

data  along the four original attributes as well as the fraction of total vari­

ance expressed by each component. The total variance of 4.54 cm2 can also 

be reflected in the principal component representation. Table 1.3 lists the
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variance of the iris data set along the four zero-mean principal components.

As one can see the first two eigenvalues are one to two orders of magni­

tude larger than the others, hence the corresponding eigenvectors (first two 

principal components) reflect most of the variability of the iris data. Larger 

variability along one component increases the chance, but does not guaran­

tee. that the component contains a more noticeable differentiation between 

clusters. In Table 1.3 one can see that sepal length has a larger variance than 

petal width, while the histograms in Figure 1.4 show a better differentiation 

between groups along petal width. Projection of the iris data on the plane 

defined by the first two principal components, presented in Figure 1.6. shows 

the well defined iris setosa group and the overlapping clusters correspond­

ing to iris versicolor and iris virginica. The iris data  file is a benchmark for 

classification problems more than clustering problems due to the intertwined 

groups of iris versicolor and iris virginica. Nevertheless, using this data file 

as a test for a clustering procedure provides a verification of the clustering 

technique's ability to detect the “natural" number of clusters even if they 

are entangled.

Using these three data sets, we can cover a wide variety of problems. 

The first set of 50 two-dimensional data points offers a pedagogical example 

that allows a good understanding of the models. The second file of 6000 two- 

dimensional data  points represents a verification of the methods’ efficiency as 

well as their robustness to noise and their ability to deal with groups of dif­

ferent shapes and proximities. Finally, the last data  set is four-dimensional, 

therefore an actual problem that is not easily visualized.
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Chapter 2 

Percolation Clustering 

Algorithm

The algorithm represents a heuristic, non-parametric hierarchical technique 

that emphasizes the similarity with the percolation process. The idea of ex­

ploiting the analogy with percolation phenomena in clustering techniques is 

gaining more and more attention in recent publications. For example the 

concept was used in the clustering of gene expressions [23]. The preceding 

method is a non-hierarchical technique in which the data points have multiple 

probabilistic memberships to different groups, mirroring only vaguely physi­

cal percolation. Our simulation focuses on monitoring the largest cluster size, 

which is one of the core characteristic function of the system in percolation 

theory. The discontinuities of this function indicate the "natural'' number of 

clusters in the analyzed data set.
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2.1 Introduction to  Percolation Theory

Percolation models were used for the first time in the early 1940’s to de­

scribe the gelation of polymers [24, 25]. However, as a mathematical topic, 

the theory was born the next decade with the contributions of Broadbent 

and Hammerslev [26]. Ever since, it progressed steadily and by the mid 

1980's was already established as a  broad inter-disciplinary topic [27]. After 

a quieter period in the first half of the 1990’s, the interest for percolation 

theory rose again due to its multiple applications and the developments in 

computer technology. The second part of the last decade and the beginning 

of the current one registered an avalanche of publications on the subject. 

Mathematicians, physicists, computer scientists, engineers, chemists and bi­

ologists have joined interests in the study of this phenomenon and the phase 

transitions associated with it.

Percolation is the structural modification experienced by thermodynami­

cal systems (systems with a large number of elements) when switching from 

short-range to long-range connectivity between their components. The con­

figuration of these systems changes suddenly from a set of disconnected parts 

to one large unitary ensemble. There are multiple natural phenomena that 

resemble this description such as: the flow of fluids in a porous medium, the 

spread of diseases in a population, the spread of fires in a forest, stochas­

tic star formation, and so on. The transition has the same characteristics 

either when independent components suddenly become connected by ran­

domly coupling neighboring elements, or. when the long-range connectivity
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of the systems disappears by arbitrarily cutting off some of the short-range 

bonds. With this specification in mind we can add many more examples that 

correspond to percolation models, for instance: the conductor-insulator tran­

sition in metal films, connected-disconnected networks, para-ferromagnetic 

transition in diluted magnets, the liquid-gel to polymer transition, etc. [28]

All changes experienced by the physical systems mentioned above conform 

to the general characteristics of a phase transition. They are sharp, in the 

sense that the quantities describing the system encounter discontinuities and 

occur when specific parameters reach critical values. In the proximity of the 

transition, before reaching the discontinuity, the characteristic functions of 

the system obey power laws whose exponents are universal constants. I will 

succinctly describe below the transition parameter and main characteristic 

functions of percolating systems, focusing on the qualitative behavior in the 

thermodynamic limit when boundary effects are negligible. The emphasis is 

on the variation of system features versus percolation parameter rather than 

on the finite-scaling effects.

Most percolation models deal with connectivity between objects placed 

at random in a D-dimensional Euclidian space. Particular attention has 

been given to the cases D  =  2 and D =  3 due to their obvious applicability. 

There are two main directions in percolation theory: one in which the system 

components are placed at random on a lattice, called lattice percolation, 

and the other one where the underlying background has no predetermined 

structure and objects can be placed arbitrarily anywhere in space, named 

continuum percolation.
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In both cases connectivity remains the main concern and is usually defined 

based on adjacency. Two points are adjacent whenever they are nearest 

neighbors on a lattice or are closer than a prescribed distance in a continuum 

space. Therefore a natural parameter for percolation is one that controls 

the distances between system components such as a generalized density or 

a probability of lattice elements occupancy p. The critical value of this 

parameter, pc, called the percolation threshold, varies wildly depending on 

system characteristics: its space dimensionality and structure (continuum or 

different lattice configuration), the shape of the system components (bonds 

or sites for lattice percolation, spheres or cubes for continuum percolation), 

definition of adjacency, etc. Despite the particulars of the different systems, 

their characteristic functions behave similarly during transition. Let T  be 

such a function, then:

T  ^  \p — pc\x when p f pc.

where the notation p ] pc means p —* pc and p < pc. The exponent A. 

called the critical exponent of T ,  is specific to the characteristic function 

and has a universal value related only to the dimensionality of the space. 

The percolation thresholds as well as the exact values of different critical 

exponents for a variety of systems are a matter of ongoing research.

Lattice percolation has been studied for a longer time than continuum 

percolation due to its topologically ordered structure which is easier to mon­

itor. Thus, before referring to continuum percolation, which is closely related 

to our clustering algorithm. I will discuss the percolation parameter and three
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core characteristic functions of lattice percolation. In these models the con­

necting elements are occupied lattice sites or lattice bonds. The entire space 

is seen as a grid whose components can take at random two Boolean values: 

occupied or not. There are two types of lattice percolation: site and bond 

percolation, both with similar attributes.

The variable th a t induces the percolation transition, namely the perco­

lation parameter p. is defined as the fraction of occupied (or unoccupied) 

sites (or bonds). In the case of an infinite lattice (thermodynamic limit) 

this concentration becomes the occupation probability. The critical value 

of the percolation parameter varies with the lattice structure and shape of 

connected objects. For example, in the case of site percolation in a two- 

dimensional Euclidian space, pc = 0.50 is the theoretically established exact 

value for a triangular lattice and pc ^  0.5928 is the computed value for a 

square lattice[29]. For the bond percolation case, again in two-dimensional 

Euclidian space. pc 0.34729 on a triangular lattice and pc =  0.5 on a square 

one. In a three-dimensional space the critical value for site percolation on a 

simple cubic lattice is pc ^2  0.3116. Current research is being done to esti­

mate more precise values of percolation thresholds. Rigorous mathematical 

models are available only for two dimensions and in many cases their solu­

tions require the use of numerical methods. For higher dimensions we rely 

on computer simulations [28].

The percolation transition is expressed as the variation of the system 

characteristic functions versus the percolation parameter. One characteristic 

function carefully studied is the mean cluster size, S(p),  defined as the num-
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ber of elements per cluster averaged over all existing clusters [28]. At low 

values of the concentration p, far below the percolation threshold, singletons 

or small sized clusters fill the system. As p increases, larger and larger clus­

ters appear and we obtain a distribution of cluster sizes. As long as p < pc 

this distribution, and therefore the mean cluster size, is dominated by rather 

small or medium sized clusters. At p =  pc numerous smaller clusters connect 

in a network that spans the entire lattice and the main contribution to S(pc) 

comes from the maximal (largest) cluster size M(pc). When the maximal 

cluster reaches the system limits for the first time some publications call it 

the incipient percolation cluster and the trail that connects the lattice edges 

is named first percolation path[29]. As the percolation parameter approaches 

the critical value from below, the mean cluster size S(p)  starts being domi­

nated by the maximal cluster size, M{p).  Both grow rapidly and at p =  pc 

they encounter a discontinuity. The discontinuity amplifies with increasing 

system size and develops into a singularity in the thermodynamic limit. This 

behavior is expressed by a power law:

Sip)  ~  7— — r- when p f pc- (2 .1)
(P ~ Pc)y

The critical exponent 7  is independent of the lattice structure and depends 

only on the system dimensionality D.  In the thermodynamic limit, above 

the percolation threshold the maximal cluster size becomes infinite, hence so 

does the average cluster size.

The second characteristic function that yields a similar behavior is the 

correlation length. £(p), or the connectivity function, defined as the average
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distance between two components belonging to the same cluster [28]. For 

simulation purposes an equivalent function can be used: the mean spanning 

length, lavg{p), which represents the spanning length averaged over all existing 

clusters. The spanning length of a cluster is the maximum distance between 

any two components:

1=  max | | r , - r j | | .  (2 .2 )
i j ^ c lu s t e r

For an infinite lattice in the proximity of the percolation threshold, the cor­

relation length is dominated by the spanning length of the maximal cluster 

and behaves according to:

whe" p U c ' (2'3)
Above pc the connectivity function diverges, and in the thermodynamic limit 

is infinite for any p > pc. The exponent u is another universal constant 

dependent only on the dimensionality of the system.

To uncover yet another general trait of percolation we monitor the relation 

between the mean cluster size and correlation length in an infinite lattice for 

the sub-critical, critical and super-critical regimes. Let us consider a hyper- 

cubic box of large length L,  whose volume increases according to the space 

dimensionality D as V  ~  L D. Throughout the first stage, far below the 

percolation threshold, the size (mass) of the average cluster trapped in the 

box varies slowly for various large values of L as:

S(p, L) ~  log(L) for p < pc. (2.4)

Because the space is almost empty, changing the box scale does not drastically 

change the size of the average cluster. In other words, its mass grows very
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slowly with increasing volume, therefore its effective dimensionality is zero. 

The critical regime begins when the system approaches percolation, for p < pc 

but p big enough to create large clusters. At this point the average cluster 

size starts being dominated by the maximal cluster. The largest cluster, 

which will become the percolating cluster, does not have a uniform density 

but rather a fractal structure due to the in-between empty cells. Considering 

the same box of length L the maximal cluster size (mass) M(p)  scales as 

follows:

A/(p, L) ~  Ld for L < £(p). (2.5-a)

A /(p .L )~ L ° for L >£ ( p ) ,  (2.5-b)

where £(p) is the correlation length for the given concentration p and d is the 

universal fractal dimension of the incipient percolating cluster. The above 

equations show that when the box's linear dimension is smaller than the 

correlation length, the enclosed maximal cluster is seen as a fractal perco­

lating cluster. Due to its many empty cells the mass (size) of this structure 

increases more slowly than its volume, according to equation (2.5-a). The 

non-integer dimension d is a universal constant that depends only on the 

space dimensionality D,  but is independent of the lattice particularities. For 

2 -dimensional space d ~  1.89 [28]. When the linear dimension of the box be­

comes of the same order of magnitude or larger than the correlation length, 

the empty spaces in-between become relevant. The maximal cluster reaches 

its limits inside the box and its mass remains constant for any box length as 

expressed in equation (2.5-b). When the concentration p = pc. the correla-
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tion length reaches an order of magnitude comparable to the infinite lattice 

linear dimension and the maximal cluster becomes the percolating cluster. 

No m atter how large the box length, L, the maximal cluster inside has a frac­

tal dimension d. In the super-critical regime, when the parameter p exceeds 

the critical value pc, the maximal cluster fills the lattice almost uniformly 

and its size (mass) increases similar to its volume:

\ I { p , L ) ~ L D for oo. (2.6)

For an infinite system many absolute quantities, such as the average clus­

ter size or the correlation length, diverge above the percolation threshold. 

Therefore, normalized functions would be more appropriate to describe the 

system’s super-critical behavior. Such a characteristic function is the prob­

ability of percolation P{p) for a given concentration p. It corresponds to 

the normalized maximal cluster size and is defined as the fraction of the en­

tire system occupied by the spanning cluster. For a two-dimensional square 

lattice of size L:

P(P) =  (2.7)

In the thermodynamic limit, P{p) is the probability that a randomly selected 

lattice site (or bond) belongs to the spanning cluster. This quantity is also 

called the strength of the infinite cluster. P(p) plays the role of an order 

parameter since it is zero for p below pc when there is no spanning cluster, 

and becomes a positive value at the percolation threshold (p =  pc) when the 

first percolation path appears. The increase is abrupt and near threshold
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P(p) is given by a  power law:

P(p) ~  (p -  pcf  for p I pc. (2.8)

where p |  pc means that occupation probability approaches the critical value 

from above (p —► pc and p > pc). When all occupied sites (or bonds) are 

interconnected P(p) =  p and when the entire lattice is occupied P(p) =  1.

From the discussion above, the maximal (or average) cluster size and 

correlation length are features that describe the system in the sub-critical 

regime, while P(p) is a critical and super-critical attribute. The exponents 

7 . u. t3 and the fractal dimension d of the percolation cluster are universal val­

ues. Analogies between percolation and thermally induced phase transitions, 

such as a para-ferromagnet or a liquid-gas transition, reveal the universality 

of critical phenomena behavior. The concentration p corresponds to tem­

perature T.  with the observation that they play an inverse role. Percolating 

systems become connected above pc and a thermal system becomes ordered 

(ferromagnetic or liquid) below Tc. The mean cluster size S  corresponds to 

a susceptibility \  or a compressibility K.  since it describes a local order as 

opposed to the average disordered system. The strength of the infinite clus­

ter (percolation probability) P  corresponds to the magnetization M  or to 

the difference between liquid-gas densities, given that all these quantities are 

zero on one side of the phase transition [28, 30].

The last few years registered an increased interest in continuum perco­

lation models. The objects in this case are equal sized geometrical shapes 

(spheres, cubes or cylinders) built around Poisson distributed points in a
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uniform D-dimensional Euclidian space. The objects can be impenetrable or 

can overlap. Such a model is the well-known “Swiss cheese” in which equally 

sized void spheres of radius r  appear at random in a system. The spheres 

can overlap and percolation occurs when the system becomes disconnected. 

In continuum percolation the role of the occupation probability, p, is taken 

by the fraction of occupied (or void) spaces 0 . The percolation transition 

is described by the variation of system characteristic functions versus o. As 

in the lattice percolation case the critical value of the percolation parame­

ter <pc depends on the system particularities. These percolation thresholds 

represent an area of very active research. Recent publications present these 

values for a two-dimensional and three-dimensional space where the connect­

ing objects are squares or cubes built around Poisson distributed points. For 

squares aligned with the axes oc ~  0 .6 6  and for randomly oriented square 

(pc ~  0.62. In three dimensions for aligned cubes: <pc ~  0.28 and for ran­

domly oriented cubes pc ~  0.22 (noticeably smaller). The critical volume at 

percolation threshold for spheres built around Poisson distributed points is 

pc ~  0.29 only 4 % larger than the critical value for aligned cubes [31].

2.2 Description of the Algorithm

Our clustering method represents a new approach to the nearest-neighbor 

algorithm. By exploiting an analogy with the percolation process we add 

insight into the clustering procedure and transform it from a parametric 

technique into a non-parametric one. Applied to an unknown set of data the
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Figure 2.1: Seven two-dimensional data points grouped into roughly two clus­

ters of sizes four and three. The first cluster (the leftmost one) is completely 

connected and the second cluster (the rightmost) has not yet linked fully.

"Percolation Clustering Algorithm” determines automatically the number of 

clusters and their location using no a priori assumptions.

The algorithms currently utilized in the study of continuum percolation 

use equally sized geometrical objects such as squares [31]. disks [32]. or thin 

rectangles [33] in two dimensions and spheres, cubes or ellipsoids of revolution 

in three dimensions [31]. These objects are not placed completely randomly 

in space, but they are generated such that their centers form a Poisson distri­

bution. In contrast, clustering procedures aim to locate unevenly scattered 

groups of points, therefore our technique utilizes objects of changing size.

We imagine data  points as the centers of initially small hyper-spheres 

expanding in a D-dimensional space. Each sphere “swells", increasing its

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

radius until it touches other spheres and “sticks” to them. This is the grow­

ing scheme. A group of mutually connected spheres forms a cluster. A 

two-dimensional example with seven data points grouped into two clusters 

is illustrated in Figure 2.1. The quantity we are primarily interested in is 

the cluster size, defined as the number of sample points in each cluster. At 

the beginning only the closest points are linked and cloudlike structures start 

growing in different areas of the sample space. As the spheres keep augment­

ing their volume, more and more data points connect. Once a “chain” of 

such spheres spans an entire cluster, percolation occurs and the cluster size 

remains constant until a group of mutually connected spheres merges with 

a neighboring cluster. When two clusters connect, a sudden jump in cluster 

size can be detected. Coalescence continues until all data points are grouped 

in one large, final cluster. The analogy with the percolation phenomenon 

allows us to sense the changeover th a t occurs when a cluster gets “locked in 

place” . This transition can be detected in two ways. First, by monitoring 

cluster size as a function of distance between connected points, we notice a 

plateau once the cluster is completely formed, followed by an abrupt jump 

when the cluster merges with another cluster. The second way is to examine 

the discontinuities in the first derivative of cluster size with respect to dis­

tance between connected points. In this case, the growth rate of cluster size 

encounters a sharp peak when two clusters connect or when a large cluster 

gets “locked in place” .

The successive “swelling” and joining of data points is accomplished by 

browsing the ascending ordered list of distances between sample points.
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For each distance in the list, the two adjacent points are connected. We 

monitor the size of the largest cluster as a function of distance between sample 

points. In fact, for a more detailed analysis of the data, the algorithm can 

output the sizes of the first, second, third or any chosen number of largest 

clusters.

The binary distances used in our simulations are Manhattan distances 

defined by equation (1.3) and the Euclidean norm described in equation 

(1.2). Obviously, the Euclidean distance corresponds to the image of an ex­

panding hyper-sphere while the Manhattan distance defines enlarging hyper­

parallelepipeds around data points. In a low-dimensionality sample space 

(for well-defined clusters) both metrics generate basically equivalent results 

and for computational efficiency reasons the M anhattan distance is a more 

convenient choice. A number of partitionings obtained by means of the Man­

hattan distance were reconfirmed using the Euclidean norm.

The bottleneck of our algorithm is building the ordered list of distances 

dij between points. Given a data file of N  sample points, the total number 

of distances between them is n =  hence the number of elements in

the distances list is of order N~. Note that all sample points end up being 

grouped in one final cluster before the expanding spheres around data points 

reach radii comparable to the largest distances between samples. Once the 

largest cluster contains all data points the simulation ends. Therefore, a 

simple way to limit the number of elements in the distance list is to insert 

only the values smaller than a threshold. The threshold has to be chosen 

such that by browsing the ascending ordered list of distances, at the end the
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largest cluster contains all of the sample points. This value is not known 

beforehand and has to be tuned for each data set. The cut-off distance is 

the only adjustable parameter of the Percolation Clustering Algorithm and 

it has an auxiliary character in that its value has no bearing on the final 

clustering results. In our calculations the threshold was typically less than 

one-half of the average distance between sample points.

2.3 Computational Details

Before we finish the general description of the method, it is useful to present 

the technical details of algorithm implementation. The codes are written 

in C+-1- and make use of the Standard Templates Libraries. [35] Developed 

in early 1990 by Stepanov and Lee at Hewlett Packard Laboratories, these 

generic (template) containers, iterators and functions became part of stan­

dard C + +  in 1994. They allow a fast and efficient implementation of different 

computational techniques as will be the case in our algorithm.

Each sample is represented by a structure, called a  point, that contains 

a label (the sample number in the original data file), an array of attributes 

(coordinates), a group number (which represents the cluster number to which 

the point will be assigned) and a link (a pointer to another point) that allows 

the point to be hooked to different clusters. Since the to tal number of sample 

points is known, the points are stored in an array.

The first step of the simulation is the building of an ordered list of dis­

tances. In fact the items stored in the list are structures that contain a
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distance <4, and the two addresses of the adjacent points. This way. for any 

ordered distance in the list, the entire information about the edge points is 

easily available.

As mentioned above, for a  set of N  sample points, the number of elements 

in the distance list is proportional to N 2. As we know, the order of magnitude 

O  of the time T  it takes to sort a  list of n items depends on the number of 

items in the list. Since the computing time required to order the distances 

increases strongly with the number of elements in the list, the efficiency of 

the sorting algorithm is of the utmost importance.

For a small number of sample points (up to a couple of hundred) the 

distances are calculated one by one and inserted into a singly linked list 

such th a t the resulting sequence is in ascending order. This simple linear 

insertion sort, based on a singly linked list requires repetitive comparisons 

with all of the previously stored values. The total number of comparisons is:

n n (n -l-l)  , o
2 +  3 + -----\-n — -----— 1 ~  n~.

Thus, for such an algorithm T(n)  is 0 ( n 2) [35]. For N  sample points the 

computational time T ( N )  needed to build the ordered list of distances is 

0 { N 4). The linear insertion sorting scheme has the benefit of simplicity and 

requires very little overhead, which makes it suitable for small data sets. 

However, larger files call for more efficient sorting algorithms.

For large data sets the Percolation Clustering Algorithm uses heapsort 

[36], which is an efficient selection sort developed in 1964 by John Williams. 

A heap is a complete binary tree, hence all its nodes have two descendants
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except, possibly, the ones on the last level. If the last level is incomplete the 

occupied vertices are placed in the leftmost positions. The tree has to satisfy 

the heap-order condition, which means that data stored in one node is larger 

or equal to the data stored in its descendants. Any insertion or deletion in a 

heap structure is done such that it preserves the abovementioned properties. 

The sorting algorithm based on the heap starts by extracting the largest data 

from the root, storing it at the bottom of a container and replacing it by the 

value of the rightmost leaf, which at this point disappears. The next step is 

to restore the heap properties of the resulting tree by moving down the new 

root value, until the next largest data surfaces to the root and the algorithm 

repeats itself. It can be demonstrated that the comparison and interchange 

scheme described above has a worst-case computing time of order

T(n)  is 0 ( n  log2 n), (2.9)

hence, for N  sample points there are n ~  N 2 number of binary distances 

and:

T( N)  is 0 { N 2 log2 N 2) = 0 { N 2 log2 N).

The computing time for a large number of sample points still increases as 

N 2 log2 N.  but it has been theoretically demonstrated that the average com­

plexity of a sorting method cannot be lower than the one expressed in equa­

tion (2.9) [35].

The Standard Template Library provides a generic heapsort-based prior­

ity queue, that can order any items for which the operator “< ” is defined. 

The sorted data is stored in an auxiliary container of the user’s choice. Since
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the Percolation Clustering Algorithm is applied to differently sized files we 

used a container known as a vector, which is a linear contiguous storage 

whose capacity can be dynamically increased as needed. The items stored in 

the priority queue are structures that contain the binary distance, rftJ, and 

pointers to the adjacent points. These structures are sorted in ascending 

order of their distance members.

The distances are inserted into an ordered list or priority queue as they 

are calculated while browsing the sample points array. The second step of the 

algorithm is sweeping the list. Once a distance is extracted from the priority 

queue, its end points connect and they are linked together in a cluster. The 

clusters are implemented as numbered, singly-linked lists of points and when 

a free point connects with a member of a cluster numbered , the point is 

added at the end of this list and receives a group number n t . All points in a 

cluster have their group number equal to the cluster number they belong to. 

Therefore, any time during the simulation we know the cluster arrangements. 

In case a point belongs to the cluster n\ and becomes connected to a point 

attached to cluster n2, the two lists rq and n2 are linked head to tail. The 

order number of the new cluster is m in(n  1, n2) and the group numbers of all 

its members are renumbered accordingly.

2.4 Computational Results

VVe have implemented this method and tested it on a number of cases. The 

first example is the simple two-dimensional “toy” problem presented in sec-

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6 0  r-

5 0  

. §  4-0 -
CO
a5 3 0  -
to _
-g 20 

10 -

1 .40.6  0.8 
distance

1.2.O 0.2 1 -O

0.6 0.8 
distance

1 .2 1 .4

Figure 2.2: Top: Size of the largest (thick line) and second-largest (thin 

line) cluster as a function of distance between connected points for data set 

in Figure 1.2. Bottom: Growth rate of largest cluster size as a function of 

distance between connected points for data set in Figure 1.2.

tion 1.3. The results of the Percolation Clustering Algorithm for this data set 

are presented in Figure 2.2. The top chart displays the size of the largest and 

the second largest cluster as a function of the distance between connected 

points. One notes how the largest island size increases up to a distance of 

0.6. where it reaches a plateau of 31 points corresponding to the rightmost 

circle. The plateau begins when all the points of this circle are connected, 

hence when the largest intra-cluster nearest neighbor distance is reached. The 

second cluster (thin line) attains a sustained plateau of 19 points at the same
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distance 0 .6 , which in this case represents the largest nearest neighbor dis­

tance within the leftmost circle. At this point the second cluster has also been 

correctly located, but it is not yet identified by monitoring the largest clus­

ter size. Note that if two clusters have the same largest intra-cluster nearest 

neighbor distance, such as the two circles in Figure 1 .2 , they achieve plateaus, 

thereby connecting all their sample points, at the same point. Clearly the 

denser cluster (the right circle in Figure 1.2) has a larger growth rate, as the 

top graph of Figure 2.2 reveals. Finally, at a distance of 1, which corresponds 

to the minimum  inter-cluster distance expressed by equation (1). the two is­

lands merge, the largest cluster size has a  jum p of 31 to 50 points and the 

second cluster disappears. The 19 point jum p of the largest cluster size can 

also be detected on the bottom graph of Figure 2.2. All data points have 

been grouped in one single cluster at a distance of 1 . which represents less 

than half of the 2.4 average distance between data points. It is important to 

note th a t the apparent jump of the largest cluster size from 5 to 27 points, 

corresponding to a distance of 0.4, is not due to cluster coalescence, but 

to the roughly uniform distribution of points in the cluster. Many sample 

points of the rightmost cluster in Figure 1 .2  have their nearest neighbors 0.4 

distance away. Therefore this value appears several times in the ordered list 

of distances, which implies that points are added successively rather than in 

one piece. This occurrence is clearly reflected by the multiple values that the 

growth rate of the largest cluster size encounters at the distance 0 .4 , as one 

can see on the bottom graph of Figure 2.2. The same remark can be made 

regarding the apparent leap of the second cluster size at distance 0.6. It is
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Figure 2.3: Top: Size of the largest (continuous thick line), second-largest 

(thinner line) and third-largest (thinnest dashed line) cluster as a function of 

distance between connected points for BWD data set. Bottom: Growth rate 

of largest cluster size as a function of distance between connected points for 

BWD data set.

clearly important to monitor simultaneously the largest cluster size as well 

as its first derivative.

To compare our algorithm to other existing non-parametric clustering 

procedures, we analyzed a second two-dimensional data set [12]. The sam­

ple distribution is described in section 1.3 and plotted in Figure 1.3. As 

previously mentioned, the BWD data set represents a cumbersome trial for 

many clustering algorithms. Figure 2.3 presents the results of the Percola-
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tion Clustering Algorithm for the 6000 two-dimensional data set described 

above. The top chart monitors the size of the three largest clusters as a 

function of the distance between connected points. The largest cluster size 

encounters three plateaus that clearly indicate the existence of three clusters, 

but the presence of the background requires a careful interpretation of the 

plot. The first plateau of about 1100 samples, which identifies the upper 

cluster, is shortly followed by a jump of about 1700 points, produced by the 

coalescence of the upper and center clusters. This jump is larger than the 

size of the merging cluster (the center ring which has 1400 sample points) 

due to background points that have been successively connected during the 

'‘expansion” of the merging clusters. By the same token, one notices the slow 

increase of the largest cluster size along the plateaus. Hence, plateaus that 

are not completely flat indicate the presence of the background and. in this 

case, the jump sizes do not correspond to the exact size of the joining clusters. 

The number of clusters can also be correctly identified by examining the first 

derivative of the largest cluster size as a function of the distance between 

connected points (bottom part of Figure 2.3). We detect three large jumps 

(the second one made up of two close steps) which identify the three denser 

areas. Because the clusters have the same uniform distribution of points, 

their largest intra-cluster distance is about the same. Thus they will “per­

colate” at aproximately the same point, but, by monitoring only the largest 

cluster size, they will be recorded later. This method works well for the data 

set presented in Figure 1.3 as can be seen from Table 2.1. which summarizes 

the real data distribution as well as partitions obtained using the Percola-
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Method Largest Middle Smallest

cluster cluster cluster

(no. of points) (no. of points) (no. of points)

Data Distribution 2729 1356 1084

Percolation Algorithm 2744 1354 1079

Super-Paramagnetic 2759 1380 1097

Table 2.1: Data distribution and the results of two clustering algorithms for 

the BWD problem.

tion Clustering Algorithm and the Super-Paramagnetic Clustering technique 

(SPC).

Several choices are available to better determine the size of each cluster 

in the presence of the background. One is to use a filtering method that will 

eliminate the background points before the clustering procedure. The other 

one is to apply the Percolation Clustering Algorithm iteratively, running the 

simulation until one cluster has clearly emerged (as signaled by a sustained 

plateau or a large jump). At that point one interrupts the simulation, locates 

the cluster in question, removes it from the data  set and then restarts the 

clustering algorithm with the remaining data. Although iterative application 

of the Percolation Clustering Algorithm is not easily automated, this may be 

the method of choice for some other complicated problems.

To demonstrate the algorithm’s behavior on a more realistic case, we have
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Figure 2.4: Top: Largest cluster size as a function of distance between con­

nected points for the iris problem. Note plateaus and jumps near cluster sizes 

50 and 100. Bottom: Rate of variation of largest cluster size as a function of 

distance between connected points for the iris problem.

studied the well-known four-dimensional iris data set presented in the intro­

ductory chapter, section 1.3. The Percolation Clustering Algorithm generates 

the results presented in Figure 2.4.

The top plot presents the sizes of the three largest clusters as a function of 

distance between sample points. One can observe a small plateau at abscissa 

0.7 followed by a  steep jump. At this point an inversion between the first and 

second largest cluster occurs and can be explained as follows: at the begining 

of the simulation the well-defined group of iris setosa sample points connect.
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Figure 2.5: Top: Largest cluster size as a function of distance between con­

nected points for the iris versicolor and iris virginica data. Note plateaus 

in the cluster sizes at 39 and 40 points as well as the jump that follows. 

Bottom: Rate of variation of largest cluster size as a function of distance 

between connected points for the iris versicolor and iris virginica data.

forming the largest cluster. Before all of them are linked, i. e. when their 

largest intra-cluster distance is reached, the size of this cluster is surpassed by 

the second growing set of flowers iris versicor and virginica. The first jump is 

due to the coalescence of these two close groups. The long flat plateau of 100 

points indicates the size of the two clustered groups and the existence of no 

background. The third cluster of 50 flowers is still detached and will merge 

later at the distance of 2.7. Analyzing the variation rate of the largest cluster
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Method Iris 

setosa 

(no. of flowers)

Iris 

versiclor 

(no. of flowers)

Iris 

virginica 

(no. of flowers)

Data Distribution 50 50 50

Minimal Spanning Tree 50 50 50

Percolation Algorithm 45 40 38

S uper- Paramagnetic 45 40 38

Valley Seeking 67 42 37

Complete-Link 81 39 30

Table 2.2: Results of different clustering algorithms for iris data. Note the 

similar partitions produced by Percolation Clustering Algorithm and Super- 

paramagnetic Clustering procedure.

size, presented on the bottom of Figure 2.4. one notes the three peaks that 

correspond to the three groups of flowers. In order to better understand the 

interplay between the largest and second largest cluster, we consider it helpful 

to identify and eliminate the well separated iris setosa group and rerun the 

algorithm for the 100 iris versicolor and iris virginica flowers. The results, 

similar to the one obtained for the entire file, are presented in Figure 2.5. 

Note that the inversion present in Figure 2.4 has been eliminated, thereby 

allowing a clearer monitoring of the cluster sizes.

The classification results of our algorithm as well as the partitions ob-
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Figure 2.6: Two-dimensional sample points, grouped in two circular clusters 

of different densities, set two units apart and connected by a bridge.

tained by means of other clustering methods are listed in Table 2.2. Some 

data points have not been classified, but we note that all prior methods 

based on a heuristic clustering approach are unable to correctly classify all 

of the points. Our success rate is as good as that of the superparamagnetic 

technique, but at a considerable gain in computational efficiency. The only 

method able to reproduce entirely the original data distribution, is the Min­

imal Spanning Tree [37], which uses an ultrametric distance function. An 

ultrametric distance statisfies two properties, the distance between a point 

and itself is zero (da =  0 ) and the symmetry porperty (dtJ =  dJt), as well as 

the ultrametric inequality < max{dit. dfc-,} [38].

In spite of the encouraging results obtained with the Percolation Cluster­

ing Algorithm, we are aware that our method, as presented so far, empha-
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Figure 2.7: Top: Largest cluster size as a function of distance between con­

nected points for the two-dimensional set represented in Figure 2.6. Bottom: 

Rate of variation of largest cluster size as a function of distance between 

connected points for the data set represented in Figure 2.6.

sizes closeness and ignores the connectivity between groups of sample points. 

Consider, for example, the first simple two-dimensional toy problem whose 

sample points are grouped in two equal circles (R = 1) of different densities. 

In a new set of data, the clusters are 2R  apart and the set contains 3 more 

points which create a bridge between the two islands (see Figure 2.6).

Graphs of the largest cluster size versus the distance between connected 

sample points and the variation rate of largest cluster size as a function of the 

distance between connected points are presented in Figure 2.7. The increase
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Figure 2.8: Top: Largest cluster size as a function of distance between con­

nected points for the two-dimensional set represented in Figure 2.6. Bottom: 

Rate of variation of largest cluster size as a function of distance between 

connected points for the data set represented in Figure 2.6.

of the largest cluster size is almost continous and the second cluster cannot 

be detected. To a certain extent, depending on the definition of a cluster, one 

can argue that the configuration presented in Figure 2.6 represents only one 

group of points. Nevertheless, using a more common perception of a clus­

ter, which considers the interconnectivity and compactness between cluster 

members an important factor, the file in Figure 2.6 contains two clusters of 

different densities connected by a bridge. In order to express this concept 

we introduce a new type of similarity function th a t will express the connec-
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tion between multiple sample points. We build a “tertiary distance’" between 

three points as the maximum of the three binary norms dtJ.dtk, d^y.

dijk =  max(4 ,, dik, dkj). (2 .1 0 )

This new function allows one to group three sample points at a time as 

opposed to only two. thereby emphasizing compactness. The new algorithm 

using this approach has to create an ordered list of tertiary distances. Note 

that in the case of an iV sample points data  file the number of items to be 

sorted is of order iV3. For the case in discussion, the results presented in 

Figure 2.8 are encouraging. The top diagram shows the sizes of the first two 

largest cluster sizes as a function of the tertiary “distance” defined in the 

equation 2.10. Note the two plateaus of 19 and 31 points, which correspond 

to the number of sample points in each circle. The bottom chart displays a 

jump of 22  points in the largest cluster size which suggests that the leftmost 

circle simultaneously absorbs all three bridge points and bonds to the largest 

cluster. Note tha t the tertiary “distance” at which the two circular islands 

finally connect is 1 , meaning that the middle bridge point concurrently links 

both clusters.

The idea can be extended to quaternary or any user defined order q 

of similarity functions, with the observation that for N  sample points the 

number of items to be ordered increases as N q. This makes the algorithm 

less and less efficient for larger data sets, and therefore it was not applied to 

the 6000 points two-dimensional data file.

The method seems to correctly identify the number of clusters and is ro-
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Figure 2.9: First three largest cluster sizes as a function of tertiary "distance” 

between connected points for iris data set.

bust to noise or outliers, but in the case of overlapping clusters this approach 

needs to be used with caution. Trying to apply the same procedure for the 

iris data set, the partitioning worsens. As one can see from Figure 2.9. three 

clusters can be identified. One cluster is of 50 sample points and is clearly 

separated from the rest of the file. The other two groups are overlaping clus­

ters of 100 flowers total, containing 20 and 47 compact sample point cores 

and miscellaneous outliers. The two groups of iris versicolor and virginica 

are identified by their core, more compact members, while the outliers are 

collected indiscriminately together. Interestingly enough, similar partition of 

the 100  iris versicolor and iris virginica flowers is obtained with other cluster­

ing algorithms which emphasize the compactness between cluster members, 

as is the case of the Nucleation and Growth Clustering method presented in 

the next chapter.
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Chapter 3

Nucleation and Growth 

Clustering

Another heuristic approach to the clustering of data sets is described in 

this chapter. This novel method is based on an analogy with the process of 

nucleation and growth that occurs in island formation during epitaxial growth 

of solids or in other solid-solid reactions. The technique is competitive with 

existing algorithms and offers some possible advantages for certain types of 

data distributions. Furthermore some of the results presented below have 

been previously published [39].

Data mining is rapidly finding acceptance in materials science as a power­

ful way to detect trends, to optimize manufacturing, and to design or discover 

new compounds [40]. Techniques used range form neural networks and ge­

netic algorithms to clustering approaches, such as the k-means method. Here 

we address the reverse problem and exploit ideas from materials science to de-
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sign a new data  mining algorithm, i. e. the clustering of a multi-dimensional 

data set [41].

In the ensuing discussion we will assume that the data to be clustered 

resides in a two-dimensional Euclidean space. This is merely a means to 

aid visualization of the algorithm and does not constrain the range of ap­

plicability in any way. Thus, we imagine a group of N  data points in the 

plane and we need some way to divide this group into clusters, depending 

on the distance between the points. This grouping together reminds us of 

the nucleation and growth processes that occur in materials as they solidify 

on the surface of a thin film that is growing by deposition of particles. We 

therefore propose to exploit this analogy and suggest a novel ‘‘Nucleation 

and Growth Clustering” (NGC) algorithm. The method is able to deal with 

clusters of varying densities and automatically finds the appropriate number 

of clusters (as opposed to the k-means technique, which needs to be re-run 

for different k-values). Moreover, trapping in local minima is less likely in the 

NGC method since the deposition is random. While the Percolation Clus­

tering Algorithm, described in the previous chapter, emphasizes the connec­

tivity between data points, the current technique considers simultaneously 

the connectivity as well as the compactness of the samples. In all studied 

cases, the convergence of this method is very rapid, particularly compared to 

the other two physically motivated approaches [12, 13. 14. 15. 19]. Thus, the 

technique combines the speed of heuristics with the convenience of physically 

motivated approaches.
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3.1 Algorithm Description

The core idea of our novel approach is to consider the clustering process as 

akin to a nucleation and growth phenomenon well-known in materials science 

and solid state physics [42, 43]. The original data points are called the ‘seed- 

data” and are taken as the nucleation centers, around which aggregation will 

occur. We now imagine a deposition process in which additional data points 

( "ad-data") are introduced randomly in the plane. When the ad-data appear 

within a defined threshold distance, dt, to a seed-data point, the ad-data will 

stick to it. This threshold distance is defined as half of the minimum distance 

between any two seed-data points in the entire data  set. If they appear at a 

distance greater than dt the ad.data are removed from the space. Although it 

does not correspond to the physical deposition phenomenon, we perform this 

removal due to the large empty regions that can occur in clustering problems. 

Diffusion, while occurring in lattice deposition, would not be an efficient tool 

in linking the seed-data and would add a large computational overhead to the 

simulation. The plane, or deposition space, where the ad-data is randomly 

generated is defined by the maximum and minimum coordinate value of each 

dimension over the sample set. To these margins we add twice the threshold 

interaction distance, so that sample points on the edges will be able to have 

ad-data deposited completely around them as opposed to just on one side.

As more and more ad-data are introduced islands develop just like in 

epitaxial thin film growth [43]. Thus, as the simulation proceeds and more 

and more particles have been deposited, one notices the formation of distinct
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islands, corresponding to clusters. In a  given island, the seed-data form the 

cluster, while the ad-data are merely a tool to facilitate the detection of the 

connectivity of that cluster. Eventually, all islands merge together and form 

one giant cluster. However, before this happens, distinct clusters may be 

observed. This can best be monitored by looking at the cluster-size as a 

function of time. Each time step represents a newly generated ad-data that 

might stick or be removed. Thus, similarly to the Percolation Clustering 

Algorithm, the output presents the largest cluster sizes versus the number of 

generated ad_data. As long as a cluster is still growing, its size will increase 

over time, sometimes in sudden jumps when two clusters merge. Once the 

cluster has formed completely, its size will remain constant for a relatively 

long time, until it merges with a neighboring cluster. By detecting these 

plateaus in the cluster-size curve we can determine the number of clusters 

and their location.

3.2 Com putational D etails

Each data point has been implemented as a structure with an integer label, an 

array of coordinates, and a group index that indicates the cluster it belongs 

to. Sample points are stored in an array. The randomly generated ad_data 

are represented by similar structures with the addition that each of them 

stores the distance they are from the point that they are attached to. All 

connected added points are stored in a singly linked list, so they can be easily 

attached or removed.
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In order to generate a random point in the deposition space we use the 

random number generator rand(). This function, provided by the Standard 

Template Library (STL) in C + +  or Linux C Library, returns a pseudo­

random integer between 0 and RAND-MAX (the largest integer offered by 

the operating system, usually 232). In order to obtain a repeatable sequence 

of pseudo-random integers, the rand() function needs a seed, which is set 

by the argument of the function srand(). If no seed value is provided, the 

rand() function is automatically seeded with the value 1. In our computation 

we used a seed value of 2. Since in some old implementations of the rand() 

function the lower order bits of the generated number are less random than 

the higher ones [44], we produce a random real number r  €  [a, a +  6 ). using 

the formula:

r  =  a +  6 * (rand()/(RAND_MAX +  1.0)). (3.1)

where RAND_MAX is the maximum value of the integer type

RAND_MAX =  215 =  32,768.

3.3 Com putational Results

This method has been implemented and tested on several benchmark cases. 

The first data set on which the algorithm was tested consists of two groups of 

points, roughly corresponding to circles with different densities, as shown in 

Figure 1.2. Like presented in Chapter 1 , the larger cluster contains 31 points 

and the smaller one 19 points. To picture how the algorithm progresses
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Figure 3.1: Snapshots showing the configurations as more and more deposited 

"ad.data” are introduced, corresponding to the two-dimensional data shown 

in Figure 1.2.

the actual configurations are shown as "snapshots” in Figure 3.1, with seed- 

data in solid symbols and ad_data in open symbols. Note that the two 

circular clusters have now been distorted into ellipses for ease of graphical
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Figure 3.2: Size of the largest and second-largest islands as a function of 

the number of deposited ad.data for the two-dimensional data shown in Fig­

ure 3.1.

presentation. The actual distance functions used were based on the circles 

as shown in Figure 1.2. After 1500 accepted ad_data, which we will call 

depositions, have been introduced one can see how the rightmost cluster is 

almost totally connected, but not quite so. After 2000 ad-data depositions, 

the rightmost cluster is completely connected, but the leftmost cluster is 

still disjointed. After adding a further 1000 ad_data the leftmost circle has 

also been correctly identified. Finally, the bottom right figure shows how 

the two clusters have just merged after 4500 depositions. The output of 

the NGC algorithm is presented in Figure 3.2 where the graph shows the 

size of the largest island and the second largest island as a function of the 

number of deposited ad.data. One notes how the largest island size increases
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monotonically, until it reaches a plateau after about 1800 particles have been 

deposited. Note that this plateau corresponds to 31 points being clustered, 

i. e. the rightmost circle has been identified. It is logical that this cluster is 

obtained first, since the density of points there is larger. The second largest 

cluster reaches a sustained plateau with 19 data  points after approximately 

2750 ad .data have been introduced. At that point the second cluster has 

also been correctly located. As more and more ad_data are deposited, finally 

the two clusters merge, which occurs after roughly 4000 depositions. These 

results illustrate quite convincingly how the method works on an admittedly 

simple problem.

We have tested our methodology on several other cases, including prob­

lems listed in References [12] and [19], and find good performance in all cases. 

To demonstrate the algorithm’s behavior on a more complex case, we have 

studied the well-known iris data problem. This da ta  set, described in Chap­

ter 1 of this study, contains fifty examples each of three types of flowers: 

Iris setosa, versicolor, and virginica. for a total of 150 sample points. Each 

data point is characterized by four attributes, and a representation of these 

four-dimensional vectors in a plane spanned by the attributes petal length 

and petal width is given in Figure 1.5. Inspection of this figure as well as 

the representation of the data in a plane spanned by the first two principal 

components, given in Figure 1.6. shows that the iris setosa data are well 

separated from the other two, which are not so easily disentangled.

Figure 3.3 shows the result of the NGC algorithm on the iris data. Plotted 

are the size of the first three largest clusters as a  function of time (number
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Figure 3.3: Size of the largest and second-largest and third-largest clusters 

as a function of the number of deposited ad_data for the iris data problem.

of depositions). Although the results are not as clear-cut as for the circles 

example (Figs. 3.1 and 3.2). one can clearly observe a small plateau, after 

2.0 x 105 depositions near cluster size 48 (which then increases to 50). followed 

by a steep jump. Either a distinct plateau or a noticeable jump signals the 

presence of a cluster. VVe also observe a distinct plateau, which first emerges 

after 3.2 x 105 depositions, corresponding to 98 points. At this point the two 

clusters of iris versicolor and virginica have merged, with the third one. of 

iris setosa flowers, still detached.

To better understand the nature of the transitions shown in Figure 3.3. 

we found it instructive to look at the behavior of the third-largest cluster as 

a function of the number of deposited ad-data. One notices that the jump 

in largest cluster size in Figure 3.3 after 2.4 x 10s atoms corresponds to the
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third largest cluster merging with the largest cluster. As a  consequence, the 

size of the third largest cluster plummets quickly to zero. Correlating the 

behavior of several cluster sizes is frequently a good way to identify when a 

cluster is completely connected. Note that in this particular case, the second- 

largest cluster corresponds to the iris setosa data, which is easily classified. 

It shows a distinct plateau at 50 data points, without any further changes 

until very late in the simulation when all clusters merge. Hence the NGC 

algorithm reveals the existence of three groups, containing 50 (iris setosa). 46 

(iris versicolor) and 23 (iris virginica) flowers, respectively. Some data points 

have not been classified, but we note that all prior methods based on a strict 

heuristic clustering approach are unable to correctly classify all points. Notice 

that the sizes of these last two intertwined groups are almost equal to the 

sizes found using the tertiary similarity function based Percolation Clustering 

Algorithm (47 and 20 respectively). This is due to the existence of a more 

compact group of members in each cluster and a number of entwined outliers.

The interesting behavior in this particular case, is to be found in the in­

terplay of the largest and third-largest clusters. Because it may be infeasible 

to store too many cluster sizes, we have found it useful on occasion to run a 

simulation until one cluster had clearly emerged, as signaled by a sustained 

plateau or a large jump. At that point we would interrupt the simulation, 

locate the cluster in question, and remove it from the d a ta  set. We would 

then restart the clustering algorithm with the remaining data. This tended 

to work very well in practice and. although it is not easily automated, may­

be the method of choice for more complicated problems. For the case of the
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Figure 3.4: Size of the largest (solid line) and second-largest (dotted line) 

clusters as a function of the number of deposited ad.data for the 1 0 0  iris 

versicolor and iris virginica.

iris data problem, after eliminating the well defined iris setosa cluster, the 

NGC algorithm generates the results presented in Figure 3.4. It is easy see 

that the third cluster increases up to 19 points and then connects with the 

other group. Due to the randomness of the ad-data deposition, the size of the 

third cluster is found to be between 22 (when the 150 flower file is analyzed) 

and 19 (when only the iris versicolor and iris virginica data is examined). 

To improve the quality of the partition two solutions might be considered. 

First is to choose a smaller interaction distance between seeds and ad .data, 

or even a distance dependent interaction. Second is to allow the system to 

escape from local minima by introducing a temperature dependent diffusion 

of the ad.data. The necessary computation overhead for such a simulation 

in a continuous space becomes cumbersome and therefore, in the following 

chapter we consider a discrete deposition and diffusion.
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Chapter 4 

Discrete Deposition Clustering 

Algorithm

The method described in the following sections is a heuristic non-parametric 

clustering technique inspired by the analogy with the deposition of atoms on 

a lattice. A system composed of data points and fictitious added particles is 

allowed to evolve in a self-organizing regime and the thermodynamic quan­

tity specific heat at constant volume is used as a partition validity criterion. 

The algorithm is robust against the existence of noise and the final results 

are independent of initial conditions. This procedure differs from the one de­

scribed in Chapter 3 by changing the deposition structure of the space from 

a continuum to a discrete lattice-type structure, which brings computational 

efficiency. In addition, the added particles can diffuse, or be added or re­

moved, with a temperature dependent probability, which allows the system 

to escape from local minima.
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4.1 Description of the Algorithm

The sample data, represented by points in a D-dimensional metric space, are 

considered as vertices of an undirected graph whose edges connect sample 

points no further apart than a cutoff distance dc■ Thus vector points further 

apart than the threshold distance remain unconnected. Each new data set 

may require a fine tuning of the cutoff distance, but since in general the inter- 

cluster distances are larger than the intra-cluster ones, a good choice for the 

cutoff length is the average distance between all sample points. This option 

implies that it is most likely that the points in the same cluster are connected 

while the number of inter-cluster links are minimized. Nevertheless, for data 

sets with a small number of elements, a larger cutoff distance builds a greater 

number of deposition sites. A larger number of deposition sites in turn allows 

the system to be better represented by a thermodynamic approximation. The 

sparse graph spanned by the data points represents the "lattice" on which 

the deposition takes place. This is, of course, not a regular lattice as in 

crystallography, but we use the same terminology' to  emphasize the similarity 

and to exploit the analogy. The mid points of the graph edges, called "dual 

sites" . represent the deposition locations. Figure 4.1 presents such a graph 

spanned by five data points i .j ,  k, m. n. represented by solid circles as the 

graph’s vertices. Each of the six edges, drawn as lines, contain at the mid 

point a dual site, symbolized by an empty circle. Dual sites are assigned 

the indices of the two boundary data points, i. e. {2. j } .  As one can notice, 

there are no direct links between the pairs of data points placed farther apart
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Figure 4.1: The sparse graph between five sample points i . j . k .m . n .  repre­

sented by black dots, the graph’s edges drawn as solid lines, and the dual 

sites denoted as. for example, { i j} and symbolized as empty circles.

than the chosen cutoff distance dc. Such pairs as i and m or i and n have no 

deposition sites available between them.

Fictitious points, called "ad.data points” . are randomly deposited on the 

dual sites merely as a way to simulate interaction between sample points. 

Since there is no way to predetermine the number of initially required de­

position particles, we start by depositing a number of ad_data points equal 

to the number of sample points. The total number of ad.data points varies 

during the simulation according to the conditions described below.

Let us consider two data points i and j  represented by the D-dimensional 

vectors Xj and Xj respectively, placed at a distance dij =  |xj — Xj|. In a
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two-dimensional space these vectors can be the vertices i and j  of the graph 

represented in Figure 4.1. The distance is assumed to be a measure of the 

dissimilarity between the vectors. In our simulations we used a Manhattan 

distance defined by equation (1.3). If an ad-data point point is situated on 

the dual site { ij} between the two sample points i and j  (see Figure 4.1). it 

introduces an attractive interaction. Eij. whose absolute value should be a 

decreasing function of distance. A possible choice is:

(4.1)
&ij

The functional dependence of interaction strength on the dissimilarity (dis­

tance) between sample points will not affect the final partition, but rather 

the convergence of the algorithm and the sharpness of the phase transition. 

An alternative to the long range interaction described by equation (4.1) is 

the following expression:

Short range interactions such as:

E^ = -exp(-d?-), (4.3)

or
d*.

E^ = —exp(— i ) .  (4.4)
a£

where a is a local distance, can also be used. Because the densities of different 

clusters can be quite diverse, the short range interactions typically need fine 

tuning and a local specific distance, a. is used to normalize the absolute 

distance between sample points. This local length a varies from one vector
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to another and is usually chosen to be the average distance to the first 3-5 

nearest neighboring pairs. As such calculations create a lengthy overhead on 

the simulation, and since we are mainly interested in the general behavior 

of the described system in a self-organizing regime, we choose the simple 

interaction expressed by equation (4.1).

After the initial ad_data point deposition the system, considered to be in 

contact with a heat bath, is allowed to evolve toward thermal equilibrium. 

A Monte Carlo simulation [45, 46] generates configurations according to a 

Boltzmann distribution in the grand-canonical ensemble (i. e. with vari­

able particle number). The deposited particles can diffuse, be added or be 

deleted according to the conditions described below. Ad_data points can 

move around to adjacent unoccupied dual sites. Adjacent dual sites are de­

fined as the mid-points of the edges with a common vertex. As shown in 

Figure 4.1 the dual sites {i, j }  and {i .k}  are considered adjacent since they 

share the common data point i. Consider the previously mentioned ad_data 

point placed on the dual site {ij}.  A jump to a neighboring site {ik},  {jk}  

or { jm},  is always accepted if the newly occupied dual site introduces a 

stronger interaction:

Eik = < Eij = (4.5)
d,k < E , , ~  ^

or correspondingly Ejk < Et], etc. So the system Hamiltonian (energy)

Ft a
h = y. Y, E « • < 4 -6 >

i=l j = l.(j<i)

where i , j  =  1, ...,Af  and A/* is the total number of ad.data points, decreases

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

as shown:

A H  =  Eik -  Eij < 0. (4.7)

This condition obviously corresponds to the situation when dtj > dik (or dtJ >

less dissimilar sample points. The contact with a heat bath at temperature 

T  allows the system to escape from local minima, offering ad_data points 

a free energy that permits “uphill” moves. Therefore the transition from a 

dual site {i j}  to another deposition site {ik} is also possible even if A H  = 

Eik — E^ > 0  with a probability p:

where k s  is the Boltzmann constant, henceforth set equal to unity. These 

acceptance criteria are known as the Metropolis algorithm [18].

Given that the initial number of deposition particles is not strictly deter­

mined with respect to the total number of ad_data points necessary to group 

the sample points into clusters, we found it useful to work in the grand- 

canonical ensemble and vary the number of ad_data points. Utilizing the 

chemical potential p, > 0 . a deposition on a randomly selected empty site 

{kl} generates a variation of the system's Hamiltonian:

while a deletion of a randomly chosen ad_data point creates a difference:

djk). Therefore the ad_data point will tend to introduce attraction between

(4.8)

A H  = (4.9)

(4.10)
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The additions and deletions are always permitted if they lower the Hamilto­

nian. In case they generate a variation A H  > 0, they are accepted with the 

probability described by equation (4.8).

The chemical potential is a very sensitive parameter whose value can 

produce a complete deletion of all ad_data points if n  is too large or a total 

occupation of the dual sites if /z is too small. Consequently it must be 

carefully adjusted by trial and error for each run of the simulation. The 

larger the number of deposition sites in the system, the less sensitive it is 

to the value of the chemical potential. Therefore, in the case of small data 

files it is easier to choose a larger value for the cutoff distance, hence a larger 

number of dual sites, than to fine tune the chemical potential.

In the physical phenomenon of atoms depositing on a lattice, diffusion is 

much more likely than addition or deletion. Therefore, during our simulation 

we set the diffusion of ad_data points to be one hundred times more likely 

than either addition or deletion. Thus every one hundred attempts to move 

an ad.data point is followed by one addition and one deletion attempt. Since 

there are no relevant criteria, a number of ad_data points equal to the number 

of sample points is initially deposited randomly on the dual sites. The system 

is then allowed to evolve toward thermal equilibrium by repeating attempts 

to move, add and delete ad_data points until the staggered averages of the 

system’s Hamiltonian are equal.

Thus the thermal equilibrium criterion is fulfilled when the system’s 

Hamiltonian averaged over the odd-number steps (Ha) equals the average 

calculated over the even-number steps (He) up to a tolerance of one-tenth of
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one percent of their average as shown:

H0 -  He < 0.001 x Ho + H\  (4 .n )

Once thermal equilibrium is reached, the simulation generates represen­

tative configurations for the statistical ensemble, but since it is impossible to 

cover the entire configuration space we replace it with a statistical sample of 

size M , as is common in the Monte Carlo method [45]. The number of steps 

needed for the system to reach thermal equilibrium as well as the size of the 

statistical sample is, obviously, larger for larger data sets. After thermal equi­

librium is reached, each accepted jump, addition or deletion creates a new 

configuration which is considered for the statistical sample average. Various 

observables from statistical physics [30] can be computed at this stage. The 

quantity we are primarily interested in is the variance of the system’s Hamil­

tonian over the statistical sample normalized by the temperature squared, in

other words the specific heat at constant volume:

Cv =  H2^ H  , (4.12)

where
  i m

&  = T7 £  (413)
17 t n

and
/  1 M \ 2

(4.14)" '■ (ip ')
Such a model exhibits two phases. At high temperature the system is dis­

ordered and the fluctuations of the system’s Hamiltonian are large, but the
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specific heat remains rather small due to the temperature squared in the 

denominator of equation (4.12). At low temperatures the system is in an 

ordered state and the variance of the system’s energy is very small even 

compared to the the temperature, therefore the specific heat is small. In an 

intermediate regime, reached as we sweep through temperatures, there is a 

certain point at which the system undergoes a phase transition. The compact 

groups of sample points become relatively strongly coupled, the intra-cluster 

deposition sites are filled and any change in the positions of ad-data points 

induces large variations of the Hamiltonian. At this point the variance of 

the Hamiltonian is large relative to the temperature and the specific heat 

encounters a peak. Thus the temperature where the peak of specific heat 

occurs indicates when some of the internal structure of the system emerges. 

This is an analog of the phase transition encountered in statistical physics 

[30], similar to a magnet becoming magnetized or a liquid freezing. In prin­

ciple one can have a sequence of several such transition as the clusters split 

into smaller ones. Such a situation indicates a hierarchical structure of the 

data  set.

One of the intricacies of the non-parametric technique is finding a cluster 

validity criterion, a parameter that could provide the most "natural” parti­

tion. Our technique uses the thermodynamic quantity specific heat as such a 

parameter and identifies the clusters at a temperature slightly lower than the 

critical temperature. We start the simulation at high temperature where the 

system’s memory is insignificant and apply a simulated annealing procedure. 

The fictitious temperature is lowered, the system is allowed to reach thermal
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equilibrium and then the Monte Carlo simulation generates a large number 

of configurations for the statistical sample. The specific heat is averaged over 

this sample according to equations (4.12), (4.13) and (4.14).

4.2 Com putational Details

The main entities of the model are the data points, the deposition sites 

and the ad_data points. Each data point is represented by a structure that 

contains the array of coordinates, a label, a group index which indicates the 

cluster it belongs to (initialized to -1 for unattached sample points), a pointer 

link that allows the addition to a cluster-list, and a vector of neighbors which 

contains the labels of vertices the point is connected to. The elements of 

the dual sites structure are the two labels of adjacent vertices, the distance 

between them, and a flag to indicate if the site is occupied or not. An ad_data 

point is represented by one integer that is the index of the dual site vector 

it occupies.

Arrays are employed to store the two sets of elements with known size: 

the number, N,  of sample points and the D coordinates for each of them. The 

cutoff distance is a parameter that can be changed from one run to another, 

therefore the number of graph edges and the number of dual sites as well 

as the degree of any vertex varies. Similarly the number of ad.data points 

fluctuates during the simulation. Thus from the rich variety of containers 

provided by the Standard Template Library (STL) of C + + , we chose vectors 

to store the deposition sites and the ad_data point sets. As linear contiguous
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storage, vectors are similar to arrays but have the capacity to expand their 

sizes at run time [35]. Vectors are also used to load the labels of all points 

connected to a certain vertex.

The first function of the program initializes the array of sample points 

and their coordinates. The next function calculates the distances between all 

sample points and connects them according to the condition dij < dc. The 

function also builds the dual sites vector and the vector of neighbors for each 

point. The simulation continues by randomly filling a  chosen number, nr. of 

dual_sites and creating the ad_data points vector.

The main tasks of the algorithm are performed by three additional func­

tions. The move function arbitrarily picks an ad_data point to move and 

shifts it if there is any available empty dual site and the conditions (4.7) 

or (4.8) are met. The add function randomly selects an empty deposition 

site and, if the conditions (4.9) or (4.8) are satisfied, fills it with a binding 

particle. The deletion function arbitrarily chooses an_data and removes it 

from the system in the conditions of equations (4.10) or (4.8). The preceding 

probability condition. (4.8), is fulfilled by a calculating exp(—A H /T )  a t each 

temperature and by randomly generating a number p between zero and one. 

If p <  exp(—A H /T )  the change is accepted.

For each add and delete function, the move function is called one hundred 

times. This cycle is repeated a number of times dependent upon the data set 

size, until the system reaches thermal equilibrium as determined from the 

staggered average of the system’s Hamiltonian. At this point, the algorithm 

is repeated M  times, M  depending on the size of the data set. to build a
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statistical sample set. From this statistical sample set, the specific heat at 

constant volume, C„, is determined for each temperature.

Some auxiliary functions are also used to visualize the process and analyze 

the validitiy of the simulation. Thus the number of ad_data points, both 

inter-cluster and intra-cluster, as well as the fraction of accepted moves, 

additions and deletions are output.

4.3 Computational Results

The way the method works will be illustrated on two of the data  files already 

presented in the first chapter, respectively the two-dimensional toy problem 

consisting of 50 points grouped in two circles and the four-dimensional iris 

data  problem.

The description of the simulation applied to the first two-dimensional 

data set allows visualization and a good understanding of the model. The 

distance between the centers of the two circular clusters, of radius R = 1. 

is 3 and the average distance between the 50 sample points is 2.46. Opting 

for a cutoff length approximately equal to the average distance between data 

points, dc =  2.5, generates 342 deposition sites which can easily be filled by 

or depleted of ad_data points during the simulation. Therefore we chose a 

threshold of dc =  3.5. which creates 892 dual sites and prevents the complete 

deposition or deletion of ad_data points, making the simulation more stable 

with respect to different values of /i. By trial and error we select a chemical 

potential n = 0.8. The simulation starts at the temperature T  =  2 by
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Nr.Dual

sites

Initial nr 

of ad-data 

T=2

Nr.ad_data at 

equilibrium 

T=2

Nr. ad_data at 

equilibrium 

T=0.01

Cluster 1 171 8 63 6 8

Cluster 2 456 27 195 236

Inter-clusters 256 15 84 3

Totat nr. 892 50 342 307

Table 4.1: Dual site arrangement and ad_data point repartition at two dif­

ferent temperatures for the 50 point two-dimensional data set.

depositing 50 ad_data points and applying a simulated annealing in steps of 

A T  = 0.01. For each temperature the system is allowed to reach thermal 

equilibrium by performing 2 0 ,0 0 0  attem pts to add or delete ad_data points 

and 100 x 20,000 attempts to move a deposition particle. Table 4.1 lists the 

number of dual sites belonging to each cluster and to the inter-cluster space. 

The 50 initially deposited ad-data points are placed on the deposition sites 

according to a uniform distribution. Allowing the system to reach thermal 

equilibrium at T  — 2. the number of ad .data points increases as shown in the 

table. Also illustrated is the arrangement of the ad-data points at thermal 

equilibrium for the lowest temperature attained. Notice that at thermal 

equilibrium at temperature T  =  2 the proportionality between dual sites 

and deposited ad-data points still exists, which means that the distribution
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of acLdata points is arbitrary. However, this is not the case at thermal 

equilibrium for temperature T  = 0.01 when the deposition particles occupy 

mainly the intra-cluster sites.

The i4snap-shots!’ of the system arrangements for different temperatures 

are shown in Figure 4.2. As the temperature is lowered the deposition parti­

cles move onto the lower energy dual sites, the intra-cluster ones. Therefore, 

as mentioned above, at low temperature the ad_data point does not follow 

the proportionality of the dual sites. The interplay between inter-cluster and 

intra-cluster ad-data is also monitored in the graph in Figure 4.3. The num­

ber of deposited particles for different temperatures is recorded at thermal 

equilibrium. As one can see, the two groups of intra-cluster ad_data points 

have almost a constant size, up to the critical temperature. The inter-cluster 

depositions decrease starting from T  = 1.5 and become almost zero below 

the critical temperature.

A way to check if thermal equilibrium is reached is to monitor the frac­

tion of accepted additions and deletions for each temperature. Figure 4.4 

shows these fractions for different temperatures before thermal equilibrium 

is reached. Notice that the number of additions of ad_data points at the 

beginning of the simulations is larger than the deletions. Approaching the 

critical temperature Tc, the number of deletions exceeds the number of addi­

tions, due to the elimination of inter-cluster ad-data points. Once the system 

reaches equilibrium and the algorithm generates representative configurations 

for the statistical sample the number of ad_data points is almost constant, 

therefore the additions approximately equal the deletions. Figure 4.5 shows
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Figure 4.2: "Snap-shots" of the 50 point two-dimensional data set grouped in 

two circular clusters and the ad .data points configuration at thermal equilib­

rium for different temperatures. Notice the number of inter-cluster ad_data 

points decreasing with decreasing temperature.

the fraction of additions and deletions out of 2 0 ,0 0 0  attem pts for tempera­

tures T  > 1.5; for lower temperatures this difference is insignificant.
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Figure 4.3: Number of acLdata points in cluster 1. (lower thin line), in cluster 

2 (upper thick line) and between the clusters (dotted line) for the 50 point 

two-dimensional toy problem. Notice the relatively constant number of intra­

cluster deposition particles up to critical temperature Tc ~  0.18. The number 

of inter-cluster ad-data points decreases as the temperature is lowered from 

T =  1.5.

Once we have a feeling for the system behavior, the variation of the 

specific heat at constant volume as a function of temperature, presented in 

Figure 4.6, becomes a relevant criterion for a “natural” partition of the data. 

From this figure the critical point can be seen to be near the temperature 

Tc ~  0.18 when the specific heat reaches its maximum value of Cv =  218. 

The image of the system configuration near the critical point (Figure 4.2) 

shows how the intra-cluster deposition sites are almost filled and the inter-
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Figure 4.4: Fraction of added (continous line) and deleted (dotted line) 

ad_data points averaged over 100 attem pts before thermal equilibrium for 

50 point two-dimensional toy problem.

cluster ad_data points occupies already similar positions to the ones attained 

at the lowest monitored temperature T  =  0.01.

For similar situations to the one under discussion, when the system en­

counters one phase transition, the clustering is done at the lowest tempera­

ture achieved. This particular data file has a high symmetry, which usually 

raises problems of local minima for many clustering algorithms. As we can 

see from the configuration of the system illustrated in Figure 4.2, even at 

T  = 0.01 there are three inter-cluster deposited ad_data points. This is due 

to the fact that the centers of each circle are at the same distance from the
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Figure 4.5: Fraction of added (continous line) and deleted (dotted line) 

ad_data points out of 20,000 attempts for 50 two-dimensional points at ther­

mal equilibrium.

points on the circumference as the distances between points at the extreme 

right of the leftmost circle and the extreme left of the rightmost one. To avoid 

such a lock in, the clustering is done by considering for each sample only a 

desired number of closest ad-data points or, similarly, eliminating a chosen 

number of furthermost ones. For the 50 point two-dimensional toy problem 

we eliminate two of the furthermost ad.data points for each sample and the 

partition obtained is identical to the original one presented in Figure 1.2.

Let us consider for now the same circular clusters of radius R  =  1 placed 

this time with the centers a distance of 3.5 units apart. Since the inter-cluster
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Figure 4.6: Specific heat at constant volume as a function of temperature for 

the 50 two-dimensional points data set. The specific heat reaches a maximum 

value of approximately Cv = 218 near the critical tem perature Tc ~  0.18 after 

which it declines abruptly.

distance is larger in this case, the simulation provides a more clear-cut re­

sult. The critical temperature is Tc ~  0.16 and the configurations of the 

system at critical temperature as well as at the lowest reached temperature 

are illustrated in Figure 4.7. Notice the total absence of inter-cluster ad_data 

points. In this situation it is not necessary to eliminate any deposited parti­

cles. Nevertheless even by disregarding the two furthermost ad_data points 

for each sample point we obtain the correct partition of the data. This ap­

proach seems to work well in more general cases and eliminates some of the 

possible problems related to local minima.
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Figure 4.7: “Snap-shots” of the 50 point two-dimensional data  set regrouped 

into two circular clusters with centers placed 3.5 units apart and the ad-data 

configuration at thermal equilibrium for critical temperature and lowest tem­

perature achived. Notice the low number of inter-cluster ad_data points.

The second file, chosen to test the Discrete Deposition Clustering Algo­

rithm, the iris data problem is a more complex one. Not only are the sample 

points four-dimensional, but also two of the three clusters are interconnected. 

The specific heat as a function of temperature for the iris data  problem is 

presented in Figure 4.8. Clustering performed at the lowest temperature 

achieved shows one cluster of 50 flowers, corresponding to iris virginica, and 

a second one of 100  flowers, representing the iris setosa and versicolor groups. 

In order to obtain three separate groups, the clustering has to be done imme­

diately after the critical temperature, but before the two intertwined groups 

connect. Partitioning done at a  temperature of X = 0.15 reveals the existence
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Figure 4.8: Specific heat at constant volume function of temperature of iris 

data problem.

of three clusters, containing 50. 42. and 54 flowers respectively, correspond­

ing to the three iris groups. This result is comparable to ones obtained using 

other heuristic techniques and has the advantage of computational efficiency 

and a clear clustering criterion, i. e. a well defined phase transition.

8 8
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Chapter 5 

Application of Clustering to  

Econophysics

In this chapter we apply some of the previously described data mining pro­

cedures to financial data. The Percolation Clustering Algorithm, presented 

in Chapter 2. is used to identify "natural” classes of stocks and examine 

portfolio taxonomy. Once the clusters of stocks are determined, the logical 

follow up is probing their time stability. By examining the stocks' correla­

tions during different time intervals we detect significant changes occurring 

in the assets cross-correlation matrix during volatile market conditions.

5.1 Introduction

Data mining algorithms are indispensable to financial data analysis. Present- 

day technology produced not only a major rise in the market participation.
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but also an increased data availability. Due to fast execution and low com­

missions, the volume of shares traded daily on the New York Stock Exchange 

(NYSE), the American Stock Exchange (AMSE) and the National Market 

System (NASDAQ) increased by afactor of 100 times in the last 25 years. 

Simultaneously, large amounts of more and more detailed information about 

market transactions are collected daily. For instance, starting from 1993 all 

transactions made on any of the world’s major exchanges are recorded "tick- 

by-tick” (down to the bid and ask prices). As a result of the continuous 

diversification of the traded assets (stocks, indices, mutual funds, annuities, 

etc.) as well as of their derivatives (futures, options), it is not only the 

amount of data that increases but also its complexity. Since the nature of 

the randomness and interactions that move the markets are not completely 

known, there is no stipulated method of analyzing the complexity of all this 

data.

Among different directions of research dealing with financial data, an 

emerging discipline developed in the 1990s: Econophysics. Emphasizing the 

empirical analysis of the large amount of available economic data, physi­

cists exploit similarities between statistical laws in physics and in financial 

markets. Concepts such as scaling, renormalization, self-organized systems, 

critical phenomena, etc. have been conveyed as new tools in modeling finan­

cial and economic data [47].

In order to describe and anticipate the market behavior numerous stud­

ies examine the time series of the assets’ price fluctuations. We direct our 

attention to the correlations between stock price variations as an indica-
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tor of market conditions. Specifically, by applying the previously described 

Percolation Clustering Algorithm, we try to determine "natural” classes of 

correlated stocks and their stability in different market conditions.

5.2 D ata

VVe investigate two five-year-long intervals: 1986-1990 and 1997-2001. In 

the first interval, twenty-six major US company stocks are tracked, and in 

the second period thirty Dow Jones Industrial Average (DJIA) components 

are examined. The index components change over time. For instance. Citi­

group (C) replaced Travelers (TRV) after the merger between Citicorp and 

Travelers in October 1998. Additionally, on November 1. 1999, Intel (INTC). 

Microsoft (MSFT), Home Depot. Inc. (HD), and SBC Communications. Inc. 

(SBC) were added to the Dow Industrials. Intel and Microsoft were the first 

NASDAQ companies to ever be included in the Dow. In the same year, the 

following companies were deleted from the Dow Industrials: Chevron Corp. 

(CHV). Goodyear Tire k  Rubber Co. (GT). Sears. Roebuck k  Co. (S). and 

Union Carbide Corp. (UK). The thirty stocks tracked by the DJIA in 2001. 

listed in Table A.2 in Appendix A. were considered representative for the 

period 1997-2001.

One realizes the major improvement encountered lately in data availabil­

ity when confronted with the study of past intervals. For instance, during 

the period 1986-1990 there are good records of the DJIA daily variations 

but insufficient ones regarding its constituents. During this interval the com-
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ponents of the DJIA did not change; however, many of these companies, 

nowadays, folded or merged with other companies. For them there are few 

or no historical records available that have been updated, i. e. accounted for 

splits or reverse splits. Nevertheless, the index tracks large cap corporations 

with long records of consistent good performance, therefore the components 

of the index in 1991, listed in Table A .l in Appendix A together with their 

ticker symbol and the primary group they belong to, are considerd represen­

tative for the interval 1986-1990. Twenty-sbc of the DJIA components for 

the year 1991 have good updated records for the interval 1986-1990 and have 

been analyzed during this period. They are written in a regular font in the 

Table A.I. The other four constituents, listed in italic, Allied Signal (ALD), 

Bethlehem Steel (BS), Union Carbide (UK) and Westinghouse (WX) have 

short or nonexistent records and have been ignored.

An interesting remark is that, regardless of the differences in DJIA con­

stituents, the statistical properties of the correlation coefficients between its 

elements remain similar during analogous market conditions. This behav­

ior reflects an underlying characteristic of the studied assets, independent 

of the industry they belong to: they are the ‘‘blue chips” , the largest pub­

licly traded companies in U.S. Their market value represents between 15% 

and 2 0 % of the total worth associated to more than 2 0 0 0  securities listed on 

the NYSE. We restrict our attention to these particular stocks due to their 

similarly large market caps, which confers to them a relative stability. An 

asset’s volatility is defined as the standard deviation of the asset’s returns 

time series. It has been established that a stock’s volatility decreases with
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its increasing market capitalisation (total value of all its outstanding shares) 

[48], therefore shorter time series are needed to  obtain statistically significant 

information for large cap items. To investigate the interaction between as­

sets we tracked their price variation time series for fixed time intervals chosen 

long enough to provide statistical relevance, but sufficiently short to accom­

modate similar market conditions. Moving toward a common ground with 

the economists’ points of view, we analyze the DJIA components quarterly 

and annually for the two intervals, 1986-1990 and 1997-2001. During these 

periods the index encountered some of the largest declines in history. What 

makes these changes even more interesting, besides their current interest, is 

the variety of causes that induced them. Some were triggered by internal 

market dynamics and had no immediate connection with political or social 

events. This is the case of the 508 point decline encountered by the DJIA 

index on October 19th 1987, the largest daily plunge ever. Another example 

is the 15% fall of index value during the first two months of the year 2000, 

a decline that started the “bear” market we are currently in. Other market 

declines encountered during these periods are due specifically to extraordi­

nary events such as the unexpected terrorist attack on September 11 . 2001.

The daily closing prices of the DJIA during the interval 1986-1990 are 

represented graphically in Figure 5.1. As one can see the period starts with 

strong market growth sustained for more than a year and a half, followed by 

a sharp decline during mid October 1987. The plunge lasts only several days 

after which the market builds a new base and starts rising again for the next 

two years (1988 and 1989). Out of this five year interval, the market ends
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Figure 5.1: DJIA daily closing price during the period 1986-1990. The ver­

tical lines delimit one year from the next.

lower than it started only during 1990, which is a year of high volatility.

A summary of market performance throughout the period 1986-1990 is 

presented in Table 5.1, which contains the DJIA daily closing price for the 

first and the last trading day of each quarter, in addition to the quarterly 

and annual percentage variation of the index.

The second interval. 1997-2001, contains the transition from the longest 

■‘bull” market in history to a “bear” market. The general market behavior 

during this period is illustrated by the daily closing prices of the index, 

presented in Figure 5.2. With small exceptions the period 1997 through 

1999 brought a significant increase in the market. In contrast, starting in 

the beginning of the year 2000 the DJIA’s value declines and continues to 

wane for the rest of the remaining interval. Thus, the first three years are 

particularly “bullish” , as often happens before a  market crash, while the last

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Year Quarter 1 Quarter 2 Quarter 3 Quarter 4 Annual
(%)

1986 1538
1819

+18.3%

1790
1893

+5.7%

1903
1768

-7.1%

1783
1896

+6.3% +23.2%
1987 1927

2305
+19.6%

2316
2418

+4.4%

2410
2596

+7.7%

2639
1939

-2 6 .5 % + 0 .6 %
1988 2015

1988
-1 .3%

1981
2142
+ 8 .1

2132
2113

-0.9%

2105
2168

+3.0% +7.6%
1989 2145

2294
+6.9%

2305
2440

+5.8%

2453
2693

+9.8%

2714
2753

+1.4% +28.3%
1990 2810

2707
-3 .7%

2700
2881

+6.7%

2899
2452

-15.4%

2516
2634

+4.7% -6.3%

Table 5.1: DJIA daily closing price for the first and last trading day of each 
quarter, as well as quarterly and annual percentage variation of these prices 
during the interval 1986-1990.

two are “bearish” years. This classification is encapsulated in Table 5.2. 

which presents the DJIA daily closing price for the first and the last trading 

day of each quarter as well as the quarterly and yearly variation of the index 

for the period 1997-2001.

In order to operate with homogeneous data, we had to discard several 

trading days during the interval 1997-2001. Out of the 30 DJIA components. 

GE in 2000 required the deletion of Sept 5th through 8 th; and HD. JNJ. 

and JPM  necessitated the elimination of March 1st. Similarly, in 2001 UTX, 

VVMT, and XOM needed the deletion of May 23rd and 24th. Table 5.3 lists
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Figure 5.2: DJIA daily closing price during the period 1997-2001. The ver­

tical lines delimit one year from the next.

the number of trading days considered during each quarter and each year for 

the intervals 1986-1990 and 1997-2001.

To discover classes of similarly performing stocks we analyze the correla­

tions between simultaneous variations of assets' prices. The quantity we are 

primarily interested in is the asset price change:

Z(t) = Y { t ) - Y { t - A t ) ,  (5.1)

where Y(t)  is the asset price at time t and Y(t  — A t) is the same quantity at 

a time A t before. Since the price is expressed in dollars (or the currency of 

the country where the financial asset is traded) its unit varies in time. Price 

changes encountered a t different periods or the price of the assets traded in 

different currencies become incomparable. A way to eliminate the scaling
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Year Quarter 1 Quarter 2 Q uarter 3 Quarter 4 Annual
(%)

1997 6448
6583

+2.1%

6611
7673

+16.1%

7722
7945

+2.9%

8015
7908

-1.3% +22.6%
1998 7965

8800
+10.5%

8 8 6 8
8952

+0.9%

9049
7843

-13.3%

7632
9181

+20.3% +15.3%
1999 9184

9786
+6.6%

9832
10971

+11.6%

11066
10337

-6.6%

10273
11497

+11.9% +25.2%
2 0 0 0 11358

10922
-3.8%

10922
10448

-4.3%

10561
10651

+0.8%

10700
10787

+0.8% -5.0%
200 1 10646

9879
-7.2%

9778
10502

+7.4%

10594
8848

-16.5%

8837
10022

+13.4% -5.9%

Table 5.2: DJIA daily closing price for the first and last trading day of each 
quarter, as well as quarterly and annual percentage variation of these prices 
during the interval 1997-2001.

effect is to study the asset return defined as:

Y { t ) - Y [ t - A )  Z(t)
( )  Y ( t - A t )  Y ( t - A t ) '  ( }

where A t  is a time interval short enough such that the currency fluctuations 

are negligible. Previous studies of portfolio and risk management have shown 

that stocks with similar market caps interact mainly as equally weighted, 

rather than value weighted, assets [49]. Since we monitor the interaction 

between similarly large companies, the th irty  largest in U.S.. it is the absolute 

variation of their prices that is relevant and not the relative variation provided
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year 1986 1987 1988 1989 1990
1st quarter 61 62 63 62 62

2 nd quarter 64 63 63 64 62
3rd quarter 64 64 64 63 62
4th quarter 64 64 63 63 63

Total 253 253 253 252 249
year 1997 1998 1999 2 0 0 0 2001

1st quarter 61 61 61 62 62
2nd quarter 64 63 63 63 61
3rd quarter 64 64 64 59 59
4th quarter 64 64 64 63 64

Total 253 252 252 247 246

Table 5.3: Number of analyzed days for each quarter and year in the chosen 
time intervals, 1986-1990 and 1997-2001.

by the return. To avoid discontinuities due to currency changes the variable 

chosen to be analyzed is the successive difference of the natural logarithm of 

prices:

S ( t )  =  t a y ( t ) - l n y ( t - A t )  =  l n p ^ 2 >  ( 5 . 3 )

As previously mentioned A t has to be an interval during which the the cur­

rency variations are insignificant, thus we choose it to be the time between 

successive trading days. For each one of the DJIA components we monitor, 

the daily logarithmic variation of the closing prices is given by

S(t) = In Y{t) -  In Y ( t - I ) ,  (5.4)

where Y(t)  is the asset closing price in one day and Y(t  -  1 ) is the same

quantity at the end of the prevoius trading day. The logarithm difference

has the property that it transforms an absolute variation into a fraction.
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which is scale invariant, but it has the drawback that, being a nonlinear 

transformation, it generally changes the statistical properties of the data.

However some parameters, in particular the cross-correlation coefficients 

of simultaneous price changes, remain unaffected. The correlation coefficient 

between the time series Z,(f) and Zj(t) is the same as the correlation coeffi­

cient between the series S;(£) and Sj(t).

It is interesting to note that when the price changes are very small with 

respect to the asset price. Z(t) «  Y(t) .  the change in the logarithm of 

prices S{t) approximately equals the return R(t). Knowing that Y(t) = 

Y(t  — A t) + Z(t),  equation (5.4) becomes:

S(t) =  la[Y{t—&t)+Z(t ) \—]n Y = 1̂ 1+ - / ^  ) *  — j^

The previous condition is usually fulfilled for high frequency data when A t 

is small and in the absence of major market changes.

5.3 Portfolio Taxonomy

Determining classes of stocks with similar or opposite behavior is essential 

for risk management. Generally, in the case of major market moves, all assets 

in the market are positively correlated and follow a similar pattern, that is 

when some go up, or down, the others follow. However, the actual increase 

or decrease of assets’ market value is different from one stock to another. 

Various factors can influence various sectors of the market differently. There 

are cyclical industries and in the absence of major global trends, there are
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even groups of stocks that move in opposite directions. Assembling a portfolio 

of stocks that belong to different anti-correlated or weakly correlated groups 

can substantially minimize the risk.

To determine the similarity in the synchronous time behavior between two 

stocks i and j .  during a chosen time interval T. we monitor the time series of 

logarithmic price changes S* and Sj. respectively, defined by equation (5.4) 

and calculate the correlation coefficient of the two time series as

where the symbol < >  means the average over the T  time records described 

as:

The above equality introduces the notation St as an alternative to S{t) to 

underline the discrete character of the parameter t and of the time series’ 

values. This notation will be used from now on throughout the entire chapter. 

Note tha t the symbol < S  > denotes the average over time as opposed to 

the average over the sample ensemble defined as:

where N  is the number of studied assets.

The definition (5.5) guarantees that for any i and j ,  the correlation coe- 

ficient has the following properties:

Pa = --j ,  ■■=, = ■ -----------
v/(<  Sf  > -  < Si >2) (< S] > -  < Sj >2)

<  S iS j -  < St >< Sj »
(5.5)

(5.6)

1=1

P a  =  1 P i j = P j i  and \pi3\ < 1. (5.7)
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Current algorithms [47, 50] used to determine a portfolio taxonomy con­

sider the time series of each stock as a  vector in a T’-dimensionai space, where 

T  is the length of the time series. The coordinates of such a vector are the 

logarithm price variations normalized to zero mean and unit variance. Hence 

stock i is represented by the vector Sj with the components Su,  given by:

S it = ! -  Slt~  < S' >  (5.8)
v / f  y/< S f  > -  < Si > 2

where Sit =  S,(£) is the change in the logarithm of the price for asset i at 

time step t , described by equation (5.4) and < 5, >  is the time average 

of this quantity over all trading days in the investigated interval T.  Notice 

that even though each trading day represents a new dimension, the coordi­

nate along this new direction depends on all other coordinates through the

temporal average < S > and standard deviation cr =  V< S 2 > — < 5  > 2. 

All coordinates are sensitive to the chosen investigated interval and change 

when adding or omitting time records. Another im portant remark is that, 

by definition, such vectors have unit magnitude:

iq r  V '  C-2 . 1 U L l  (S t ~  <  $  > ) 2 _  1 / rm

Is ' -  L .s‘ -  f  <s ? >- <s >*  ~ '■ (5'9)

An Euclidian distance between two vectors Sj and Sj is defined as:

T  T

4  = ||S, -  Sjll =  £ ( S „  -  S „)2 =  £ ( S , 2 +  S], -  2SitS„). (5.10)
t=l t= 1

According to the property defined in (5.9), the above equation can be written 

as:
T

4 = 2 - 2 £ S , S , „
£=1
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and, considering the definition (5.5) of the correlation coefficient p^,  we ob­

tain
T

Pij = ^  " SitSjt-
t= 1

Therefore, the distance between the two stocks i and j  becomes:

di} =  y/2(l — p^).  (5.11)

As long as the two assets are positively correlated (p^ > 0), it can be shown 

that the quantity defined by equation (5.11) has all the characteristics of a 

metric [47]:

dij =  0 i = j  . dij = dji and dl} < dik + dkj- (5.12)

The first two properties are easily understandable based on the correlation 

coeficients properties (5.7). Squaring both sides, the third property can be 

written as:

1 Pi j  — 2 Pi k  P k j  Of P i k  "F P k j  5: 1 "F Pi j -

The last inequality is satisfied only for positive correlation coefficients (0 < 

P  < 1)- Therefore an Euclidean distance described by equation (5.10) cannot 

be defined between anti-correlated stocks (p < 0 ).

To find the taxonomy of a portfolio containing N  positively correlated 

assets, — Euclidean distances are defined and a symmetric distance 

matrix is built. From this point on, the classification can be achieved by 

applying any one of the many clustering procedures that use distance as a 

similarity function.
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At this point it is important to underline the specifics of the stock clas­

sification problem as opposed to other clustering problems. The number of 

stocks is somewhat limited, and in the end all assets have to be partitioned. 

This is unlike, say, the pixels in image processing or other clustering problems 

that deal with large numbers of sample points, out of which some are part 

of the background and are considered noise. Therefore the main approach in 

contemporary research is to use a deterministic procedure to classify the fi­

nancial assets: the minimal spanning tree (MST), known also as the shortest 

link algorithm (SL) [47, 50, 51]. The algorithm selects the shortest distance 

between successive vectors, creating an associated ultrametric hierarchical 

tree and an associated hierarchical classification (dendogram). The method 

proves its efficiency by producing economically meaningful taxonomies [47], 

[51], but the depiction becomes more and more cumbersome as the size of 

the analyzed portfolio increases. It is hard to identify' “natural" classes of 

stocks and their time evolution. Another drawback of the procedure is that 

the distance can only be defined between positively correlated stocks.

In an attem pt to overcome this difficulty and cluster simultaneously cor­

related as well as anti-correlated assets, another method has been used [52]: 

the Super-Paramagnetic Clustering algorithm (SPM) mentioned previously 

in Chapter 1 . In this new context, the procedure is generalized by intro­

ducing two types of interactions: an attraction that tends to align the spins 

and a repulsion that favors different spin orientations. Out of q Potts spin 

values a random one is assigned to each asset and a ferromagnetic interaction 

is defined between positively correlated stocks, while an anti-ferromagnetic
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interaction is considered for anti-correlated ones. Both types of binary inter­

actions are defined based on the correlation coefficient between the assets, 

given by:

Jij =  sgnipij) ^1 -  exp J ^ - ]  . (5.13)

Performing a simulated annealing procedure, strongly correlated companies 

within the same group tend to align their spins while anti-correlated stocks 

"repel” , opting to point in different “Potts directions” . By monitoring the 

susceptibility of such a system as a function of temperature, one can de­

tect peaks indicating super-paramagnetic transitions. During the super- 

paramagnetic phase the stocks within the same cluster have identical spin 

values, while separate clusters are in different spin states. Thus the clusters 

are identified by means of a spin-spin correlation function. Unlike the MST. 

Super-Paramagnetic Clustering is a heuristic approach. Since the clusters 

are identified by means of a spin-spin correlation function, large fluctuations 

are expected for small size systems and sometimes the obtained partition is 

not unambiguous [51]. The method also requires fine tuning of the three 

parameters q, n and a as well as burdensome calculations.

VVe propose to use the Percolation Clustering Algorithm to determine a 

portfolio taxonomy. This new approach necessitates two changes: a different 

similarity function and a new way to visualize the results. As mentioned 

in Chapter 1 , the similarity function between two samples does not have to 

be a metric, but can be any monotonous symmetrical binary function [2]. 

Hence, instead of the distance or the correlation-based-interaction, we use
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the correlation coefficient between the two T  long times series, defined by 

equation (5.5) as a measure of the similarity between two items. Considering 

the vectors Sj and Sj. with the components described by equation (5.8). the 

correlation coefficient can be seen as the normalized inner product of these 

vectors or, equivalently, the cosine of the angle between them. Thus the 

similarity function s(Sj, Sj) is defined as:

.(§ .,§ ,)  =  J iS l  =  £ & $ ,  =  ft,. (5.14)
t=[

In writing the above equality we used the property (5.9) and the defini­

tion (5.5). The angle between two vectors represents a meaningful measure 

of their similarity, especially when the vector’s length is invariably unity.

Choosing the correlation coefficient as a similarity function minimizes the 

assumptions imposed on the data and avoids altogether embedding it in a 

vector space. Obviously the clustering procedure has to be able to operate 

with a non-metric similarity function, which is not the case for MST, SPM or 

many other techniques. Out of the three new clustering algorithms described 

in the previous chapters, only the Percolation Clustering Algorithm fulfills 

this requirement, since due to its simplicity it involves only ordering the 

values of the similarity function. In fact any arbitrary similarity function 

generates a similarity matrix that defines a similarity graph. The procedure 

is analogous to the MST in the sense that it selects only the highest similarity 

values to  successively connect the items. It is the representation of the results 

that makes the clustering obvious.

The Percolation Clustering AlgorithmAlgorithm proceeds, as described
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CHV GE KO PG TX XOM
CHV 0 1.15 1.18 1.15 0.84 0.89
GE 0 0 .8 6 0.89 1.26 1.16
KO 0 0.74 1.27 1.11
PG 0 1.26 1 .1 0

TX 0 0.94
XOM 0

Table 5.4: Distance matrix of the six stocks identified by their ticker symbols 
for the year 1990.

in Chapter 2, by building an ordered list of the similarity function’s values. 

The difference is that the more similar two stocks are the larger their corre­

lation coefficient, while the more alike two sample points are the smaller the 

distance between them. Therefore, using correlation coefficients as a measure 

of similarity, the algorithm starts by ordering these coeficients in a descend­

ing rather than an ascending order. The next step is to sweep through this 

list and, once a value is encountered, group together the two stocks with the 

respective correlation coefficient. The output is a graphical representation 

of largest cluster size as a function of correlation coefficients. The plateaus, 

where the cluster size remains unchanged for while, indicate the completion 

of a class, while an increase larger than one stock at a time in the monitored 

cluster size points out the addition of a new subgroup.

To demonstrate the proof of concept we analyze comparatively for the 

year 1990 a six stock portfolio using the MST and the Percolation Clustering 

Algorithm. The considered assets are: Chevron (CHV). General Electric 

(GE), Coca Cola (KO), Proctor & Gamble (PG), Texaco (TX) and Exxon
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CHV GE KO PG TX XOM
CHV 1 0.34 0.30 0.34 0.65 0.60
GE 1 0.63 0.60 0 .2 1 0.33
KO 1 0.73 0.19 0.38
PG 1 0 .2 1 0.39
TX 1 0.56

XOM 1

Table 5.5: Correlation matrix of the six stocks identified by their ticker 
symbols for the year 1990.

Ticker Symbols P d
KO - PG 0 7 3 0.74
CHV - TX 0 6 5 0.84
KO - GE 0.63 0 .8 6
GE - PG 0.60 0.89
CHV - XOM 0.60 0.89
TX - XOM 0.56 0.94
PG - XOM 0.39 1 .1 0

Table 5.6: Ordered correlation coefficients and distances between six stocks 
designated by their ticker symbols for the year 1990.

(XOM). This portfolio was also used by R. N. Mantegna and H. E. Stanley 

[47. 50] as an example of hierarchal taxonomy based on an ultrametric space. 

Between the 6  items there are 6(6~I) =  15 independent values of the binary 

similarity function (correlation coefficient or distance). Table 5.4 presents 

the distance matrix for the given portfolio during the year 1990, reproduced 

from [47], while Table 5.5 contains the correlation matrix among them during 

the same interval.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

dij 
- 1.4

a ) b)
1.2

1.0KO XON TX» ■o
GE PG CHV

0.8

0.6

KO PG GE CHV TX XON
-  0.4

Figure 5.3: (a) MST and (b) Indexed hierarchical tree obtained during the 

calendar year 1990 for the portfolio of six companies: CHV. GE. KO. PG. 

TX  and XOM (reproduced after [47]).

Note that, as expected, our calculated correlation coefficients and the 

distances, satisfy the relation (5.11). The highlighted values are the ones 

used to build the dendrogram and the clusters while the other parameters 

are somewhat redundant, connecting assets already grouped in the same 

category. The maximum number of distances (or correlation coefficients) 

needed to join N  = 6  assets is AT — 1 =  5. Based on the above two matrices. 

Table 5.6 lists, in descending order, the correlation coefficients between the
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Figure 5.4: Largest and second largest cluster sizes as a function of correlation 

coefficient during the calendar year 1990 for the portfolio of six companies 

(CHV. GE. KO. PG. TX and XOM).

six stocks for the year 1990, as well as, in ascending order, the distances 

among them during the same period. The total number of similarity measures 

between the items is 15, but only the first seven values are explicitly included 

in the ordered list, since at this point all assets are connected.

The results of the Percolation Clustering Algorithm are represented in 

Figure 5.4. Monitoring the largest cluster size function of correlation coeffi-
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cients, listed in Table 5.6, one notices a plateau of two stocks that identify 

the consumer nondurable goods group: KO and PG. Before the correlation 

coefficient decreases to the value 0 .6 , this cluster is enlarged by the addition 

of the durable goods producer GE. When the correlation coefficient reaches a 

much lower value of about 0.4, the second largest cluster, representing the en­

ergy class and formed by CHV, TX and XOM, is added. Using the ordered 

list of distances in Table 5.6. the MST method generates the hierarchical 

indexed tree (dendrogram) presented in Figure 5.4.

5.4 Taxonomy of DJIA Portfolio

For the examined intervals 1986-1990 and 1997-2001. the quarterly and an­

nual correlation coefficients between the studied assets are mostly positive. 

The negative values are generally small and within the noise level. The ap­

plication of the Percolation Clustering Algorithm to this data  set illustrates 

how the graphical presentation of the results facilitates the identification of 

economically relevant classes of stocks.

For each of the ten studied years we present below the graphical represen­

tation of the first three largest cluster sizes as a function of the correlation 

coefficient. The largest cluster is represented with a thickest line and data 

points, the second largest one is drawn in a thin line and the third in a thicker 

one. For consistency and ease of comparison, the graphical representations 

have the same interval on the abscises, [-0.1, 0.9] for the years 1986 through 

1990 and [-0.2, 0.8] for the period 1997-2001, respectively. Before analyzing
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Figure 5.5: The three largest cluster sizes as a  function of correlation coeffi­

cient for 26 major US companies during the year 1986.

the first interval, 1986-1990, a reminder is needed. The portfolio studied dur­

ing this period is built of major US companies tracked by the DJIA in 1991. 

Therefore, during the interval 1986-1990. the performance of the portfolio 

items can be compared with DJIA variations, presented in Figure 5.1 only 

qualitatively.

The year 1986 is a  good performing interval for the market and the corre­

lation between stocks is rather strong, as seen in Figure 5.5. The separation 

between primary groups is not clear. Nevertheless, notice the second largest
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Figure 5.6: The three largest cluster sizes as a function of correlation coeffi­

cient for 26 major US companies during the year 1987.

cluster composed of two major oil companies, XOM and CHV. as a  stable 

group. As usually happens during major market moves, most of the large 

cap stocks behave similarly. The largest cluster of six stocks is a mixture of 

heavy industries (MMM and DD). combined with consumer goods manufac­

turers (PG, KO, GE) and even retailers (S). This cluster continues to grow 

by the addition of several diverse companies (MCD, GM, AXP. MO, MRK, 

and T).

The strongest correlation in the interval from 1986-1990 is seen in 1987.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

26 major US stocks — 1988
3 0

I—

0.0 0 . 2 0.80.6
C orrelation  co e ff ic ien t

Figure 5.7: The three largest cluster sizes as a function of correlation coeffi­

cient for 26 major US companies during the year 1988.

as illustrated in Figure 5.6. This is due to the continuation of the bull 

market started in the previous year, followed by the abrupt drop registered 

during the fourth quarter of 1987. During major and abrupt market shifts, 

the structure of the portfolio is not clearly defined. All items perform as a 

unitary group due to the psychological component of the investment process. 

However, notice the existence of two slightly separated clusters, the second 

largest with three assets (S, GE, DIS) and the third largest composed of EK 

and IBM, which nowadays would correspond to the technology group.
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Figure 5.8: The three largest cluster sizes as a function of correlation coeffi­

cient for 26 major US companies during the year 1989.

In 1988 we again see a high correlation between stocks, as shown in Fig­

ure 5.7. though not a t the level seen in 1987. This still causes a poor resolu­

tion between different sectors. The two slightly distinguishable clusters, the 

larger composed of three companies (XOM, KO, and GE) and the second 

one formed by MMM and IBM, have no meaningful economic relevance.

The year 1989, shown in Figure 5.8, is previous to the weak year in 1990. 

and thus reveals a smaller average correlation between assets. The structure 

is more discernable and we notice the existence of two groups. S and AXP
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Figure 5.9: The three largest cluster sizes as a function of correlation coeffi­

cient for 26 major US companies during the year 1990.

form a fairly stable cluster related to retailers and financial groups. The 

second set of two items has a rather small intra-cluster correlation, less than 

0.5, and contains the companies Z and BS.

The only year that the market ended lower than it started in the first in­

terval was 1990. Notice a more visible structure of the portfolio components. 

The planteaux encountered by the largest cluster size, shown in Figure 5.9. 

are larger as compared to the previous years. Again, CHV and XOM form a 

stable separate cluster. The stocks group into a large cluster of 15 elements.
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Figure 5.10: The three largest cluster sizes as a  function of correlation coef­

ficient for the portfolio of the 30 DJIA components during the year 1997.

which then increases in two steps to 18 and then to 23. When the markets are 

weak, we conclude that the stocks have a stronger intra-cluster correlation 

and a lower inter-cluster one.

During the year 1997. most of the stocks form a rather compact group. 

As we can see in the Figure 5.10, there is a small plateau in the largest cluster 

size that contains a mixed group of consumer goods producers and banks: 

PG, KO, GE, JPM  and C, but it is quickly absorbed in a common larger 

cluster. More noticeable is the second cluster that gathers initially two and
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Figure 5.11: The three largest cluster sizes as a function of correlation coef­

ficient for the portfolio of the 30 DJIA components during the year 1998.

then three assets: MSFT, INTC and IBM, identifying the technology group. 

The third cluster containing MRK and JNJ represents the pharmaceuticals.

A more complex structure is revealed for 1998 and is presented in Fig­

ure 5.11. The largest cluster is initiated by three strongly correlated items: 

WMT, HD and GE that are providers and distributors of consumer goods. 

The financial assets. JPM. C and AXP, form the second largest cluster. The 

third group, MSFT and INTC, indicate the existence of the technology class. 

All three clusters merge together and connect with other DJIA components.
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Figure 5.12: The three largest cluster sizes as a function of correlation coef­

ficient for the portfolio of the 30 DJIA components during the year 1999.

Continuing to monitor the second and third largest clusters, one notices two 

emerging groups. The largest one related to commodities and heavy indus­

tries contains MMM, IP and DD. The smaller group represents diversified 

technologies and contains HON and UTX.

The year 1999 is represented in Figure 5.12. During this period the av­

erage correlation over all DJIA components decreases, but the correlation 

within clusters remains strong. Therefore the plateaus are longer and the 

clusters more stable. The groups not only indicate a category, but contain
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Figure 5.13: The three largest cluster sizes as a function of correlation coef­

ficient for the portfolio of the 30 DJIA components during the year 2000.

all the DJIA components related to that industry. The largest cluster starts 

with a plateau formed by financial stocks AXP. C and JPM. The second 

cluster contains initially MSFT and INTC, merging later with the other 

two technology related companies IBM and HPQ. The third cluster contains 

MRK and JNJ. Once all these groups are joined together, there still exists 

a separate cluster of four items all involved in commodities related heavy 

industries: AA, IP, DD and MMM. Notice also the existence of several small 

negative correlation values.
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In the year 2000 the DJIA ends lower than it started. O ut of the inter­

val 1997-2001, the year 2000 is the one with the lowest average correlation 

between the DJIA components. The different classes of stocks are easily 

discernible in Figure 5.13. The largest cluster starts with a group of three 

financial companies: AXP, C and JPM, and is soon joined by GE. In the 

second part of the 1990’s GE extended its business from industrial durable 

goods to financial products. As a consequence, if in the 1980’s it belonged to 

the consumer products group, in the 1990’s it is closer to financial companies. 

The second cluster represents the heavy industries containing at the begin­

ning four assets: CAT, DD, IP and MMM. It continues to increase quickly 

by adding AA and UTX. Once this group merges with the largest cluster, 

another class becomes visible: the technology group with HPQ. IBM. INTC 

and MSFT. The third cluster of two items contains the pharmaceuticals JNJ 

and MRK.

During the interval 1997 through 2000, the clusters of stocks with intra­

cluster correlation coefficients larger than 0 .6  each contain two or three assets. 

As we can see in Figure 5.14, the year 2 0 0 1  reveals the existence of several 

clusters of five or even six assets, which have an intra-cluster correlation 

coefficient larger than 0 .6 . The largest group initially includes C and JPM. 

and is then connected rapidly with APX, GE and HON. The second largest 

cluster starts with AA, DD, IP, MMM and, soon after, CAT. The third 

group holds the four technology items: HQP, IBM, INTC and MSFT. The 

two clusters that are noticeable around a correlation value of 0.3 represent 

the pharmaceuticals (JNJ and MRK) and the nondurables consumer goods
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Figure 5.14: The three largest cluster sizes as a function of correlation coef­

ficient for the portfolio of the 30 DJIA components during the year 2001.

group (KO and PG).

The examples presented above demonstrate how the graphical represen­

tation of the largest cluster size as a function of correlation coefficient helps 

to identify clusters of stocks with economic relevance.

By using the same limits on the axes of all the graphs, we can easily com­

pare the differences in the behavior of the DJIA components from one year 

to the next. An interesting observation is how in each year, starting from 

1997 to 2000, the average correlation coefficient over the DJIA ensemble de-
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creases, thus the graphs glide leftward. Simultaneously, the plateaus become 

longer and the jumps in the main cluster size larger. Thus, the market as 

an ensemble gradually loses its “strength” , it becomes more fragmented and 

the different stock categories become more noticeable, i. e. the intra-cluster 

correlations become stronger, while the inter-cluster ones decline. Once the 

transition from a strong to a weak market ends and the prices continue to 

drop, the average correlation increases again, as happens in 2 0 0 1 . but be­

comes almost irrelevant. An underlying structure is more and more visible 

and the DJIA contains several separate clusters. A clear definition of stock 

groups can be seen during the years when the market moves sideways or 

underperforms, as in 1990, 2000 or 2001. In order to better describe this 

behavior, the following section analyzes the statistical properties of the cor­

relation coefficients.

5.5 Statistical Properties o f Correlation Co­

efficients

It has been shown that the indexed hierarchical trees associated with the 

DJIA or the S&P 500 index, obtained by means of the MST, vary slowly in 

time, maintaining a basic structure on a time scale of several years [47]. The 

same result was obtained partitioning the DJIA components with the Perco­

lation Clustering Algorithm. For the period 1997-2001. four separate classes 

of stocks were detected: financial companies (AXP, C. JPM ), technology
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(HPQ, IBM. INTC, MSFT), pharmaceuticals (MRK. JN J). and heavy indus­

try  (AA, CAT, DD, HON, MMM, UTX). Though distinguishable each year, 

these clusters are “closer” during the “bullish” periods, when the intra-cluster 

correlation becomes of a similar magnitude to the inter-cluster correlation. 

During these years, the groups connect before they are completely formed 

and the DJIA portfolio behaves more as one unit. There are other small 

groups, such as the retailers (WMT. HD) or nondurable consumer goods 

producers (KO, PG). that can be identified only during some years. Describ­

ing this behavior by analyzing the statistical properties of the correlation 

coefficients is the main focus of the current section. Between the 26 major 

companies considered for the period 1986-1990, there are 325 correlation co­

efficients calculated quarterly and annually, and 435 correlation coefficients 

calculated between the 30 DJIA components for the interval 1997-2001. Their 

histograms and the moments of the ensemble are discussed below.

We start by analyzing twenty six U.S. major companies, considered rep­

resentative for the interval 1986-1990. The histograms of the 325 correlation 

coefficients are presented in the Figures 5.15 and 5.16. Histogram represen­

tations are extremely susceptible to the size of the bins. For consistency, 

the limits of all histograms are chosen to be between -0.3 and 0.9, in order 

to accommodate all of the annual correlation coefficient values encountered 

during this interval. Furthermore all histograms are divided into 150 bins.

An interesting observation regarding Figures 5.15 is that the positive 

market years 1986, 1988 and 1989 are characterized roughly by a Gaussian 

shape of the histograms. In contrast, the year 1987 displays a histogram
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Figure 5.15: Histograms of yearly correlation coefficients between 26 major 

US companies considered representative for the interval 1986-1989.
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Figure 5.16: Histograms of yearly correlation coefficients between the 26 

major US companies considered representative for the year 1990.

quite different from the Gaussian shape.

The same remark regarding the limits of the histograms can be made 

concerning Figures 5.16 and 5.18. which present the histograms of the 435 

correlation coeficients between the 30 DJIA components calculated yearly 

for the period 1997 - 2001, the only difference being that the limits of the 

histograms are chosen to be between -0.4 and 0.8, in order to suit the annual 

correlation coefficient vales during this period. The number of bins remains 

at 150. Notice that the distribution is almost Gaussian during the bullish 

years 1997 through 1999 with a decreasing ensemble average. As we make the 

transition to a bear market in 2 0 0 0 , the histograms become more complex 

and in 2001 the distribution is not unimodal anymore. It is obvious that 

the thirty stocks no longer behave as a unit with an average correlation, but
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Figure 5.17: Histograms of yearly correlation coefficients between the 30 

DJIA components for the year 1997.

rather form several separate classes.

Detailed histograms of the correlation coefficients calculated quarterly for 

the ten studied years 1986-1990 and 1997-2001 are given in Appendix B. For 

each period, the limits of the histograms and the number of bins remain as 

specified above.

Since the time distribution of the price changes Z(t) or the variation in the 

natural logarithm of price S(t) are not completely known, their correlation 

might generate unexpected results. In order to determine if the statistical 

properties of the correlation coefficients carry information about stock in­

teractions and are not the result of changes in the underlying time series, 

we calculate the correlation coefficients between the shuffled time series. We 

select the thirty  time series of the daily logarithmic price variation, S(t).
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Figure 5.18: Histograms of yearly correlation coefficients between the 30 

DJIA components for the period 1998-2001.
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Figure 5.19: Top: Histograms of correlation coefficients between shuffled time 

series of daily logarithmic price variation for DJIA stocks during 2000 and 

respectively 2001. Bottom: Histograms of correlation coefficients between 30 

series of 250 normal distributed random numbers and 100 x 30 series of 250 

normal distributed random numbers.
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for DJIA stocks, during the interval 2000-2001, since the index structure is 

most noticeable throughout these two years. We shuffle the records, wip­

ing out the information about the stocks’ synchronous behavior, but their 

distribution remains unchanged. The histograms of the 435 correlation co­

efficients between the 30 shuffled time series are presented on the top of 

Figure 5.19. The bottom  of this figure contains the histograms of correlation 

coefficients between series of normally distributed random numbers with the 

same length. The similarity between the four graphs is obvious, hence once 

the synchronicity of logarithmic price variation is removed the correlation 

coefficients become white noise. Therefore, correlation coefficient histograms 

reflect interaction between stocks and changing market conditions.

The mean value of the correlation coefficients over an ensemble of N  

stocks is calculated as:
1 N

£  * i '  <515>

where pij is defined by equation (5.5) and M  is the number of independent 

coefficients M  =  . Figure 5.21 presents the average quarterly correla­

tion coefficient between the DJIA components during the interval 1997-2001. 

As mentioned above, from 1997 throughout 2000 this average decreases, in­

dicating a weakening market unity. The smallest value is recorded in the 

third quarter of 2 0 0 0  and, once a weak market is established, the average 

correlation increases, however, it is no longer representative for the whole 

ensemble.

The same fragility of the market is revealed by monitoring the variability
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Figure 5.20: Average value of quarterly correlation coefficients between 26 
major US companies for the interval 1986-1990. On the abscissa, each unit 
represents one year and the data points are placed at the end of each quarter.
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Figure 5.21: Average value of quarterly correlation coefficients between DJIA 
components for the interval 1997-2001. On the abscissa, each unit represents 
one year and the data points are placed at the end of each quarter.
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Figure 5.22: Standard deviation of quarterly correlation coefficients between 
26 major US companies for the interval 1986-1990. On the abscissa, each 
unit represents one year and the data points are placed at the end of each 
quarter.
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Figure 5.23: Standard deviation of quarterly correlation coefficients between 
DJIA components for the interval 1997-2991. On the abscissa, each unit 
represents one year and the data points are placed at the end of each quarter.
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of the correlation coefficients. The fluctuations from the average are de­

scribed by the ensemble standard deviation (also known as root mean square 

- RMS) described as:

This quantity is calculated for the quarterly correlation coefficients during 

the interval 1997-2001 and is represented graphically in Figure 5.23. While 

the RMS is low for the first two years of the interval, starting with 1999 

and simultaneously with a decreasing average value, the variability increases, 

displaying two peaks in the second quarter of 1999 and the first quarter of

The inspection of the ensemble average or the deviation from the aver­

age is not sufficient to characterize asymmetric or multimodal distributions. 

Therefore it make sense to monitor the third and fourth normalized cumu- 

lants [53] of the correlation coefficients ensemble. The first of these quantities, 

called the skewness is defined as:

where a  is the standard deviation defined by the equality (5.16). In the case of 

a unimodal distribution, the skewness expresses the asymmetry, specifically 

by how much the values larger than the average differ form the values smaller 

than the average, normalized by the standard deviation. A negative skewness 

is obtained for the histograms (or distributions) where the values smaller than 

the average are more frequent, while a positive skewness reflects the reverse

(5.16)

2001 .

situation.
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Figure 5.24: Kurtosis of quarterly correlation coefficients between 26 major 
US companies for the interval 1986-1990. On the abscissa each unit represents 
one year and the data points are placed at the end of each quarter.
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Figure 5.25: Kurtosis of quarterly correlation coefficients between DJIA com­
ponents for the interval 1997-2001. On the abscissa each unit represents one 
yeax and the data  points are placed at the end of each quarter.
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Another relevant quantity is the fourth normalized cumulant, the kurtosis.

described as: ________

K =  A4 =  -  3- (5.18)
<7

The meaning of the kurtosis for unimodal distributions can be understood 

from the following example. Since the kurtosis of a Gaussian distribution 

is 3. any distribution with a positive kurtosis would have a longer tail. In 

other words, the extreme values of the random variable obeying the posi­

tive kurtosis distribution are more frequent than in a Gaussian distribution. 

Obviously, a negative kurtosis is representative for a unimodal distribution 

narrower than a Gaussian. In general the kurtosis can be interpreted as the 

measure of the dissimilarity between a given distribution and a Gaussian 

distribution with the same mean and variance.

The kurtosis for the ensemble of the quarterly correlation coefficients 

between the DJIA components for the period 1997-2001 is presented in Fig­

ure 5.25. We notice the small values of the kurtosis during 1997 throughout 

the third quarter of 1999 which are also reflected by the Gaussian shape of 

the correlation coefficients’ histograms during this interval. In the last quar­

ter of 1999, it seems that the market looses the strength that kept its unity 

and the ensemble of correlation coefficients encounters the highest value of 

the kurtosis. The highest value implies large variations of the correlation co­

efficient values. Thereafter, this parameter continues to oscillate indicating 

significant deviations of the histograms from a Gaussian distribution.
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5.6 Properties o f Correlation M atrix

To obtain relevant information from the analysis of the return cross-correlation 

matrix of a N  stocks portfolio we have to eliminate the noise inherent in the 

time series [53, 54, 55]. The symmetrical N  x N  correlation matrix has 

WN~l) independent coefficients which must be determined from N  time se­

ries of length T. The larger the number of assets N,  the larger the number 

of independent entries and. to reduce the noise in the correlation matrix, the 

longer time series, T, are needed to obtain significant information. In order 

to distinguish the noise from the "signal” we have to compare the empirical 

correlation matrix with the null hypothesis, i. e. a random matrix obtained 

from a given number of strictly independent finite time series.

In our calculations we consider a N  x T  rectangular matrix M . composed 

of daily logarithmic closing price variations for N  assets over a time series 

of length T. The number of considered assets is N  =  26 for the interval 

1986-1990. and N  = 30 for the period 1997-2001. Table 5.3 presents the 

length of the analyzed time series. The number of examined trading days in 

each quarter is between 59 and 64 and between 246 and 253 in each year. 

The total number of days in the first five-year interval is 1260 and in the 

second 1250. Thus the number of elements, T, in the logarithmic closing 

price variation time series is between 58 and 63 for the quarter, between 245 

and 252 for the year, and between 1259 and 1249 the five-years interval. The 

specific dimensions of the empirical matrix M  are important in choosing the 

null hypothesis model. To calculate the correlation matrix C, the matrix M
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is transformed into matrix M  by normalizing each time series to zero mean 

and unit variance and:

C =  ^ M M f . (5.19)

where M* is the transpose of matrix M . The correlation coefficients calcu­

lated this way correspond to the ones defined in equation (5.5). For each 

of the two periods 1986-1990 and 1997-2001, we calculate the correlation 

coefficients quarterly, annually and for the five-year interval and build the 

N  x N  correlation matrices. All these matrices are symmetric and therefore 

have real eigenvalues which are presented in the histograms in Figures 5.27 

through 5.29 and in Appendix C. Before analyzing the eigenvalue spectra, 

we must eliminate the noise effect emulated by the null hypothesis.

The null hypothesis model, in our case, has N  = 30 uncorrelated series 

of identically distributed random numbers. The length. T. of the series is 

choosen to be 60 records for quarterly analysis. 250 for the annual case, 

and 1250 for the five-year interval. Thus, we build random matrices M. of 

dimensions N  x T  whose elements, e\ (where t =  1 , . . . ,  T  and i = 

are zero mean Gaussian distributed random variables. The variance of each 

time series is chosen to be with T  specified above for different intervals. 

Now define a matrix C as:

C = M M ' .  (5.20)

The total variance of this new matrix is equal to unity. Even if the original 

matrix A4 is randomly generated, the properties of the matrix C are known
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for the case when T. N  —► oc. with a fixed ratio

(5.21)

The theory of random matrices shows that the eigenvalues. A. of the 

matrix defined by equation 5.20 have the following distribution:

and the eigenvalue spectrum has an upper and a lower limit equal to:

Our null hypothesis model considers Q =  =  2 for the quarterly cal­

culations. Q =  ^  = 8.33 for the annual ones, and Q =  =  41.7 for the

matrices for the cases in discussion are presented in Figure 5.26. Notice that 

all of these spectra have strictly positive lower limits and the density of the 

eigenvalues exhibit well defined peaks. Even more important for our pur­

poses is the fact that the density of the eigenvalues becomes zero for values 

larger than the upper limits. These results are valid for matrices M  with a 

large number of elements, therefore the boundaries can be considered only 

roughly for matrices with a smaller number of components.

To detect the differences between the spectra of infinite random matri­

ces and the spectra of finite ones, we used Mathematica to generate groups 

of 10,000 M  random matrices of required parameter Q. For quarterly cor­

relation matrices the null hypothesis considers N  =  30 uncorrelated series

(5.22)

max.min (5.23)

five-year interval. The theoretical eigenvalue spectra of the infinite random
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Figure 5.26: Eigenvalue spectra (solid lines) of infinite random matrices for 

the cases: Q = 2 (widest). Q = 8.33 (middle) and Q = 41.7 (narrowest 

and highest) and normalized eigenvalue histograms (dotted lines) for 10 .000  

random 30 x 30 matrices of the same parameters Q.

of length T  =  60. Each series has a Gaussian distribution with zero mean 

and a  =  l/\/60  =  0.12909 standard deviation. The histogram of the 300.000 

eigenvalues of the 10,000 symmetrical matrices C , defined by equation (5.20), 

for the case Q = 2 is normalized to unity so th a t it can be compared to the 

theoretical distribution. This normalized histogram is drawn as a dotted line 

that closely follows the theoretical graph of Q =  2 in Figure 5.26. For the 

annual correlation matrices, we create again 1 0 ,0 0 0  M. matrices, but with 

'V =  30 and T  =  250. The elements of the series are still random variables 

with a zero mean Gaussian distribution, however each series now has a stan-
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dard deviation a  =  l/x/250 =  0.06324. The histogram of the eigenvalues 

for the 10,000 C matrices for Q = 8.33 is also normalized to unit area in 

order to be compared to the theoretical eigenvalues’ distribution. The his­

togram is represented again as a dotted line following the middle theoretical 

graph in Figure 5.26. Finally, the null hypothesis for the five-year interval 

has T  =  1250 and <r =  1/V1250 =  0.02828. The eigenvalues histogram for 

the 10,000 C matrices (Q = 41.7) obtained with these values and normalized 

to unit area is represented by the dotted line following the narrowest theo­

retical plot in Figure 5.26. Notice that these spectra are in line with what is 

expected for infinite matrices. Nevertheless, a close inspection of Figure 5.26 

reveals longer tails for the spectra of the finite sized random matrices.

The results for the empirical correlation matrices that deviate from the 

ones obtained for random matrices are the ones that carry information about 

market behavior. Hence the relevant eigenvalues of the empirical correlation 

matrices must be above 3.3 for the quarterly calculation, above 2 for the 

annual cases, and above 1.4 for the five-year periods.

For risk management purposes the most significant eigenvalues are the 

smallest ones. They correspond to the directions of minimum correlation. 

The components of the corresponding eigenvectors indicate the composition 

of the least risky portfolio [53]. Unfortunately, the smallest eigenvalues are 

the most sensitive to noise and in most cases cannot be determined. Never­

theless, the study of the correlation matrix eigenvalues, while inappropriate 

for risk management, is of use in determining the general behavior of the 

market. The largest eigenvalues are way above the noise level and can give
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Figure 5.27: Eigenvalue spectra of the annual correlation matrices for the 26 

major US companies studied during the years 1986-1989.
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Figure 5.28: Eigenvalue spectrum of the annual correlation matrix for the 26 

major US companies studied during the year 1990.

a good indication about the number of determining factors in the market.

Figures 5.27 and 5.28 present the eigenvalues of the annual correlation 

matrices for the 26 assets studied during the interval 1986-1990. Notice that 

most of the eigenvalues are within the noise level, i. e. smaller than 2. For the 

years 1986-1990, there is only one large eigenvalue of the correlation matrix, 

which corresponds to the market itself behaving in a unitary fashion. This 

observation is consistent with the one-index model [49], which assumes that 

the returns of all assets are controlled by one factor.

Similar observations can be made regarding the first two eigenvalue spec­

tra  of the annual correlation matrices for the 30 DJIA components examined
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Figure 5.29: Eigenvalue spectra of the annual correlation matrices for the 30 

DJIA components studied during the years 1997-2000.
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Figure 5.30: Left: Eigenvalue spectrum of the annual correlation matrix for 

the 30 DJIA components studied during the year 2001. Right: Eigenvalue 

spectrum of the annual correlation matrix for the 30 DJIA components stud­

ied during the year 2 0 0 2 .

during the period 1997-2001. Figures 5.29 and 5.30 illustrate these spec­

tra. The years 1997 and 1998 are bullish years and the unitary behavior of 

the market is reflected in the existence of only one eigenvalue outside the 

noise level in each year. For the year 1999, when the market experienced 

unprecedented growth with the expansion of the dot-com bubble, the spec­

trum shows two prominent eigenvalues. We therefore hypothesize that the 

market has begun to lose its strength and stability, preparing itself for the
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Figure 5.31: Left: Eigenvalue spectrum of the five-year correlation matrix 

for the 26 major US companies studied during 1986-1990. Right: Eigenvalue 

spectrum of the five-year correlation m atrix for the 30 DJIA components 

analyzed during 1997-2001.

major change encountered in the following years. The phenomenon of non- 

unitary behavior is seen to continue in 2 0 0 0  and 2 0 0 1 , which is implied by 

the existence of two significant eigenvalues in the spectra of these years. As 

one can see from the Figure 5.30, right, the year 2002 has a less prominent 

second largest eigenvalue, which might suggest that the market regained its 

unity and probably the major transition already took place.

The analysis of the eigenvalue histograms for the two five-year correlation
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matrices, shown in Figure 5.31, reveals the same characteristic of the market 

behavior. Remember that the noise level is reduced, as mentioned previously, 

so that now eigenvalues above 1.4 are significant. During the first studied 

interval, 1986-1990, the one factor model seems to work well, as illustrated 

by the single eigenvalue above the noise threshold. The second period of 

1997-2001, however, exhibits a markedly different characteristic. There are 

three significant eigenvalues, with one still being much larger than the others 

and therefore measuring the general market correlation. We can explain the 

other two eigenvalues, closer to the noise level, as new factors that influence 

the market. During this period, in the late 1990’s, the DJIA was changed to 

contain stocks traded on the NYSE as well as NASDAQ, and these two mar­

kets have different trading procedures. Additionally, the broader ownership 

of stocks and the advent and popularity of online trading act to defocus the 

market and make it behave as less of a unit.

The eigenvalue spectra for the quarterly cross-correlation matrices are 

presented in Appendix C. The noise level is larger in this case due to the 

shorter length of the time series. This limits our ability to draw any strong 

conclusions about the numbers of factors that determine the market behavior.

The deviation of the market behavior from the one-factor model is as­

serted in many recent studies. The distribution of financial time series cen­

tral moments (mean and standard deviation) are shown to deviate from the 

similar distributions obtained with one index model [56]. Similarly, the anal­

ysis of the correlation based MST for the financial assets and for the one 

factor model reveals important dissimilarities [57]. All these analyses have
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been performed for a large number of assets and subsequently required long 

time series which include several market cycles.

By restricting our attention to a relatively small number of less volatile 

“blue chip” stocks, we were able to lessen the length of the time series and 

analyze separately different market conditions. The size of the chosen port­

folio is still large enough to conform to the infinite random matrices theory-, 

which helps us eliminate the noise.

5.7 The M eaning of the Correlation Matrix 

Eigenvectors

An interesting behavior of the annual correlation matrix between the studied 

assets emerges during the last analyzed five-year interval, 1997-2001. The 

second largest eigenvalue of the correlation m atrix exceeds the noise level 

during the years 1999 through 2001, which corresponds to the transition 

years from a “bull” to a “bear” market. In order to focus on this transition, 

the current section examines the annual correlation matrix from 1997 to 

2001  as well as the year 2 0 0 2 , which was added as a “post-transition” trial 

year. For comparison purposes several previous years, 1986-1990. have been 

added for some parts of the analysis. The eigenvectors will be named in 

descending order of their corresponding eigenvalues, thus the first eigenvector 

corresponds to the largest eigenvalue of the correlation matrix, the second 

one corresponds to the second largest eigenvalue and so on.
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Figure 5.32: a: First eigenvector components for two random matices. b. c. 
d, e, f :  First eigenvector components for yearly correlation matrix during 
the years 1998 through 2002 as a function of the similar components during 
the previous years.

As previously mentioned in many publications [54, 58], the first eigenvec­

tor reflects the correlation existing in the market as a whole and its compo­

nents along all assets have almost equal values. This property can be seen in 

Figure 5.32 which presents the first eigenvector components during one year 

as a function of the same components in the previous year for the interval 

1997-2002. For ease of visualization, the first bisector is drawn to underline 

the equality between components and the second bisector is also shown in
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Figure 5.33: Tenth eigenvector components for the years 1998. 2000 and 2002 
a function of the similar components during the previous years.

order to emphasize the cases when the components have equal magnitude but 

opposite signs. The sign of a specific eigenvector is determined merely on the 

normalization condition and has no practical meaning. One notices the nar­

row distribution of the first eigenvector components as well as their nonzero 

average, as opposed to the null hypothesis represented in Figure 5.32a. The 

null hypothesis diagram represents the first eigenvector components of two 

correlation matrices between sets of 30 series of “white noise” . Each series 

contains 250 independent, identically distributed random numbers chosen 

from a zero-mean Gaussian distribution of standard deviation a = 0.063. 

Comparing diagram a in Figure 5.32 with the ones 6 through /, it is obvious 

that the first eigenvector components of the empirical correlation matrices 

contain information about the asset portfolio.

In fact, the same difference can be noticed between the first eigenvector 

components and the components describing the eigenvectors corresponding 

to the eigenvalues below the noise level. As an example, Figure 5.33 presents
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the components of the tenth eigenvector of the annual correlation matrix 

for the years 1998, 2 0 0 0  and 2 0 0 2  as a function of the same components 

during the previous years. These diagrams reveal a “white noise” distribution 

of the tenth eigenvector components very similar to the one presented in 

Figure 5.32a. Therefore, the consensus is that the eigenvectors corresponding 

to the eigenvalues far beneath the noise limit given in equation (5.23). do not 

carry discernable information about the analyzed portfolio.

Returning the discussion to the components of the first eigenvector, one 

notices the robustness of its components over time. This behavior is very 

similar to one exhibited by the first eigenvector of a trivial correlation matrix 

C which has the diagonal elements c,, =  1 and all non-diagonal ones of 

constant value Cf, =  p. where i ^  j  and p G (0,1). Such a matrix, which 

mirrors a system of equally correlated assets, has one large eigenvalue given 

by [59]:

At =  1 +  (N  — 1 )p. (5.24)

and N  — 1 degenerate eigenvalues A,>2 =  1 — p. Note that as long as N  is 

large, the correlation between the assets does not have to be strong in order 

for At to have a large value. In other words, a large first eigenvalue does 

not necessarily reflect a strong correlation between assets, but arises in large 

systems due to the non-vanishing average correlation between a large frac­

tion of its elements [59]. The eigenvector Vi (corresponding to the largest 

eigenvalue Ai) is delocalized, with all its components equal to For

N  =  30. these components are all equal to 0.182, which is a value close to
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those exhibited by the empirical first eigenvector components presented in 

Figure 5.32. Moreover, the largest eigenvalues of the empirical correlation 

matrices seem to follow equation (5.24), with the constant p replaced by the 

average correlation coefficient, p. during the corresponding year. Table 5.7 

lists the average correlation coefficients over all thirty assets, p, their stan­

dard deviations, a, the largest eigenvalue Ai, calculated according to equa­

tion (5.24), and the empirical largest eigenvalue, Ai, for the years 1986-1990 

and 1997-2002. Notice the close values in the last two columns of this table, 

which shows that the largest empirical eigenvalue, Ai, has nearly the same 

magnitude as the largest eigenvalue, Ai, of the trivial correlation matrix. C. 

described above. Thus the first eigenvector represents the global correlation 

between the studied assets. It identifies the main factor in the market, not 

in the sense that it is the strongest, but in the sense that it simultaneously 

influences all stocks.

The small discrepancies between the values predicted by equation (5.24) 

and the empirical eigenvalues Ai can be attributed to the noise inherent in 

the time series. In fact, an eigenvalue spectrum closer to the empirical one. 

i. e. with multiple smaller eigenvalues, may be obtained by adding a small 

random component to the non-diagonal elements of the trivial correlation 

m atrix C, such that:

Cij = p + e ■ a,ij. (5.25)

The coefficients ati =  are generated from a zero mean Gaussian distribu­

tion of standard deviation a and fulfill all the necessary constrains such that
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Year P a Ax Ai
1986 0.343 0 .1 1 2 10.9 9.9
1987 0.637 0.103 19.5 17.1
1988 0.496 0.101 15.4 13.6
1989 0.378 0.088 11.9 10 .6
1990 0.384 0.119 12.13 1 1 .2

1997 0.369 0.106 11.7 12 .0
1998 0.306 0.116 9.9 10.3
1999 0.172 0.126 6 .0 6.5
2 0 0 0 0.158 0.128 5.6 6 .2
2001 0.298 0.183 9.6 10 .8
2 0 0 2 0.415 0.150 13.0 13.6

Table 5.7: Average correlation coefficients over all thirty assets, p. their 
standard deviations, cr, the largest eigenvalue At , calculated according to 
equation (5.24) and the empirical largest eigenvalue, Ai, for the years 1986- 
1990 and 1997-2002.

the newly obtained matrix is positive definite and has a probability of one. 

The largest eigenvalue for such a matrix has the expectation value [59]:

£[A ,j =  1 +  (N  -  l)p + {N  ~  ~  2> • +  0 (e3). (5.26)

and the expectation value for the second largest eigenvalue is given by:

E[A2] <  2ay/N  +  0 { N l/3 log N).  (5.27)

Such a matrix replaces the degenerate second eigenvalue of the trivial corre­

lation matrix C with a complex set of small eigenvalues. As one can see from 

equation (5.26), noise superimposed on a trivial correlation matrix produces 

an increase in the expectation value of the largest eigenvalue Ai. Notice in 

Table 5.7 th a t for all the years of the first studied interval, 1986-1990. the
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largest empirical eigenvalue, At, is smaller than the one obtained from the 

trivial correlation matrix. This is not unexpected, as equation (5.26) refers 

to the expectation value and not to the exact eigenvalue. However, in the 

next six analyzed years 1997-2002, all the empirical eigenvalues At are larger 

than those given by equation (5.24).

Once the meaning of the first eigenvalue and eigenvector are established, 

it is normal to continue the analysis with the second eigenvector and its cor­

responding eigenvalue, especially when this last one exceeds the noise level. 

There is an interplay between the magnitude of different eigenvalues. Repre­

senting a matrix along its eigenvectors corresponds to a rotation and trans­

lation operation. These operations preserve the matrix's trace. Since the 

number of studied assets is 30, the trace of the empirical correlation matrix 

is also 30 and this equals the sum of all of the eigenvalues. For a given system 

size N.  the first eigenvalue grows along with the increase in the average corre­

lation coefficient p. and therefore p, as shown in equations (5.24) and (5.26). 

The larger the first eigenvalue, the smaller the rest of the eigenvalues and 

hence it is more likely that the second eigenvalue is under the noise level. The 

reverse situation is also true, in that when the first eigenvalue is relatively 

small, the other eigenvalues increase and the second eigenvalue has a higher 

probability of being above the noise. In other words, when the global, i. e. 

inter-cluster, correlation weakens, other local correlations become more vis­

ible. Such a situation is encountered during the years 1999 and 2000, when 

the average correlation coefficient reaches its lowest values for the interval 

1997-2001, as shown in Figure 5.21.
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Figure 5.34: a. b. c, d. e, f : Second eigenvector components for yearly 
correlation matrix during the years 1998 through 2002 as a function of the 
similar components during the previous years.

Keep in mind that out of the interval 1997-2002, only three years have 

the second eigenvalue above the noise level: 1999, 2000 and 2001. Analyzing 

the components of the second eigenvector in a similar way to what was done 

for the first eigenvector components, the results presented in Figure 5.34 are 

obtained. Notice the small dispersion of the data points with respect to 

the first or second bisector in diagrams b, d, e and /. The low dispersion 

occurs mainly when at least one of the two considered years has the second

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

eigenvalue above the noise level and is the lowest when both years have a 

large second eigenvalue, as is the case of diagram d. This observation implies 

that the second eigenvector components have a time stability from one year 

to the next as long as market conditions are similar. This caveat helps to 

explain the anomalous behavior of plot c (1999-2000). in which the dispersion 

is large in spite of the large second eigenvalue for both years. The year 1999 

was a very bullish year, whereas 200 0  was a down year, due to the start of the 

dot-com collapse. This implies that in a market transition the components 

of the second eigenvector change.

In order to analyze the time stability of the second eigenvector compo­

nents from one year to the next, we represent graphically pairs of successive 

years out of which at least one has the corresponding eigenvalues above the 

noise level. Figures 5.35, 5.36 and 5.37 illustrate these projections for the 

years 1998-1999, 2000-2001 and 2001-2002 respectively. If the second eigen­

vector projections align along the second bisector, as seen in Figure 5.346 

and /, it means that the components have equal magnitude but opposite 

signs, thus the components for one of the paired years must be represented 

with an opposite sign. Therefore the components for the years 1998 and 2002 

are represented with a reversed sign.

At this point the natural question is what is the information carried by 

the second eigenvector. Our analysis suggests that the second eigenvector 

expresses the correlation inside clusters of stocks corresponding to different 

industrial primary groups, or classes of assets with similar economic perfor­

mance and corporate health. Though independent of. i. e. orthogonal to.
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Figure 5.35: Second eigenvector projections along the 30 DJIA components 
for the yearly correlation matrix during the years 1998 (solid line) and 1999 
(dotted line). The components for the year 1998 are represented with an 
inversed sign.

the whole market behavior expressed by first eigenvector, the second eigen­

vector becomes relevant in the transition periods. In other words, the second 

eigenvalue becomes larger than the noise when the market as a whole loses 

its strength and the stocks are not traded indiscriminately, but depending 

more on the groups they belong to.

In order to quantitatively decide which of the second eigenvector compo­

nents are significant, we used the concept of the inverse participation ratio 

(IPR) [58]. The IPR of an eigenvector is defined as:

t=i

where ujt, is the eigenvector k projection on asset i (i =  1__ N). The

meaning of the IPR is easy to understand when one considers the example

(5.28)
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Years 2000 and 2001

0 . 3
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3 0

Figure 5.36: Second eigenvector projections along the 30 DJIA components 
for the yearly correlation matrix during the years 2 0 0 0  (solid line) and 2001  
(dotted line).

of a delocalized vector v* with identical components Vki =  1 /y/N.  According 

to definition (5.28). its inverse participation ratio is Ik =  1/JV which means 

that the parameter Ik quantifies the inverse number of significant eigenvector 

components. Thus, the participation of the eigenvector is calculated as

1 / I k -

The average participation over all 30 eigenvectors compared with the 

participation of the first and second eigenvectors during the interval 1997- 

2002 is presented in Table 5.8. Notice that the participation of the first 

eigenvector is at least twice that of the average participation over all 30 

eigenvectors, while the participation of the second eigenvector is about the 

same value as the average, which is consistent with the observation that the 

second eigenvalue is highly susceptible to noise. The smaller the participation
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Years 2001 and 2002
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Figure 5.37: Second eigenvector projections along the 30 DJIA components 
for the yearly correlation matrix during the years 2 0 0 1 (solid line) and 2002  
(dotted line). The components for the year 2002 are represented with an 
inversed sign.

of one vector, the closer the distribution of its components to that predicted 

by Random Matrix Theory.

Based on the participation of the second eigenvector for each year, listed

in Table 5.8, we calculate the average inverse participation ratio associated

to one component as:

I T  = j j ,  (5.29)

where / 2 is the IPR of second eigenvector and N  =  30. The significant 

components j  are the ones whose participation a t / 2 is equal to or larger 

than the average, thus their magnitude |u2jj  is:

h i  I > ( O 171. (5-30)

where j  = 1,..., N.  Table 5.9 presents the second eigenvector inverse partic-
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Year 1997 1998 1999 2 0 0 0 2001 2 0 0 2

i /A  
l t h  
1/ /

27.24
9.33
10.66

25.92
16.43
10.06

20.56
11.01
10.27

20.36
16.42
10.56

22.60
12.94
9.88

26.38
10.03
9.23

Table 5.8: Numbers of significant components for the first the second eigen­
vectors as well as the average over all eigenvectors of the annually correlation 
m atrix dining the interval 1997-2002.

Year 1997 1998 1999 2 0 0 0 2001 2 0 0 2

h 0.1070 0.0609 0.0908 0.0609 0.0774 0.0997
/ “^ (x lO " 3) 3.57 2.03 3.03 2.03 2.58 3.32
\v2j\min 0.244 0 .2 1 2 0.234 0 .2 1 2 0.225 0.240

Table 5.9: Second eigenvector inverse participation ratio. / 2 , the average 
inverse participation associated to each component. I™9. and the minimum 
value of the projection considered significant \voj\mm for the interval 1997- 
2002.

ipation ratio 12 , the average inverse participation associated to each compo­

nent I ™9, as well as the minimum value of the projection considered signif­

icant \voj\min calculated with equation (5.30) for each of years 1997-2002. 

According to the minimum significant projection values listed in Table 5.9, we 

choose the significant components of the second eigenvector for the selected 

years and list their ticker symbol in Table 5.10.

The grid represented in this table shows stocks that move in a direction 

separate from the market as a whole, i. e. lagging or leading it. In 1997. the 

technology sector was outpacing the rest of the DJIA components, and this is 

visible in the cluster of stocks containing HPQ, IBM, INTC and MSFT. The
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Year 1997 1998 1999 2 0 0 0 2 0 0 1 2002
1 - AA AA - - -
2

3
- “1 *

4
5

- -
CAT

- - -

6 - DD DD DD - -

i
8
Q

- EK - - - -
y
10 - .
11 - - - - - -
12 - - HON - - -
13 HPQ - - HPQ HPQ HPQ
14 IBM - - IBM - -
15 INTC INTC INTC - - -
16 IP - - IP IP -
17 - JNJ - JNJ JNJ JNJ
18 - - - - - -
19 - KO - - KO KO
20 - - - - - -
21 - MMM MMM - - -
22 - - - - MO MO
23 - - - MRK MRK -
24 MSFT - - MSFT - -
25 - PG - PG PG PG
26 - SBC - - - -

27 - AT&T - AT&T - -
28 UTX - - - - -
29 - - - - - -
30 - - - - XOM -

Table 5.10: Significant components of the second eigenvector for the interval 
1997-2002.
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technology bubble also lifted telecommunication stock interest, and we see a 

cluster containing SBC and T in 1998. By 1998 and 1999, the heavy industry 

sector, containing AA. DD. MMM, HON and CAT, was lagging the market 

as investors rushed into technology stocks. In these two years, the market as 

a whole followed the technology sector and therefore the cluster seen in 1997 

disappeared, being included in the global market behavior. In the period 

2 0 0 0 -2 0 0 2 , the technology and pharmaceutical sectors are moving downward 

faster than the rest of the market, as seen in the cluster containing HPQ. 

IBM, JNJ. MRK, MSFT, T. Individual corporate effects can cause companies 

to appear in as significant components of the second eigenvector, although 

they are not following their primary industrial groups. The cause of this may 

be due to mergers, lawsuits and so on. This may explain the presence of IP 

and UTX in 1997, KO and PG in 1998, 2001 and 2002. XOM in 2001. etc.

In order to elucidate the significance of the second eigenvector and its 

components, a new procedure has been suggested [58]. The method proposes 

to eliminate the contribution of the first eigenvector, which can mask some of 

the information carried by other eigenvectors. First one calculates the scalar 

product of the first eigenvector on all the assets’ time series:
30

G l{t) = '22vi iS i(t) (5.31)
t=i

where vu is the projection of the first eigenvector on asset i and S,(t) is the 

logarithmic closing price variation of the same asset, defined in equation (5.4). 

A linear regression is then done on the return time series of each stock, as:

Si(t) = ati + + €i(t) (5.32)
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and to calculate the residuals fi(£). The correlation m atrix /C of the residuals 

is then analyzed and its eigenvectors are computed. The last step is to 

choose the significant participants of the analyzed eigenvector as explained 

above. The major components for the first eigenvector of matrix K. during 

the interval 1997-2002 do not correspond to the significant components of 

the second eigenvector of the empirical correlation matrix. This is an area of 

ongoing research and a larger number of assets has to be analyzed in order 

to firmly establish the significance of these eigenvectors.
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Chapter 6 

Summary and Suggestions for 
Future Work

The current interest in the development of new clustering techniques is due 

primarily to two factors. One is the vast amount of extremely diverse data 

facing all sectors of society on a daily basis. The other factor is the specificity 

of clustering procedures to particular characteristics of the data, i. e. the 

clustering is very dependent on the type of data and its structure. There 

are no clustering algorithms applicable to all situations and no absolute par­

titioning criteria. Each method has its own advantages and its own area 

of applicability. The recent use of statistical physics methods to clustering 

problems conveys strong validation criteria and allows a "natural" partition­

ing of the data with a minimum of assumptions. The three new clustering 

algorithms presented in the previous chapters are all based on physical phe­

nomena.

The Percolation Clustering Algorithm is a  version of the shortest link­

age method and seems to work well for situations when the noise or outliers
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cannot essentially distort the classification. Its advantage is that it can use 

a wide variety of similarity functions that can be adopted depending on the 

characteristics of the data set. There is no need to embed the sample points 

in a Euclidian space, which makes the technique applicable to a diverse set of 

problems such as the taxonomy of stock portfolios, biological classifications, 

etc. For the more complex case of intertwined clusters, a recursive appli­

cation of the algorithm can give more reliable results. When there is prior 

information about sensitivity to noise, a procedure for eliminating the noise 

can then be applied.

The results of the Percolation Clustering Algorithm to econophysics are 

very encouraging in that we obtain clusters corresponding to primary in­

dustrial groups. Further confirmation of the algorithm would be to obtain 

economically significant classifications for larger portfolios, such as the com­

ponents of the S&P 500 and the Russell 2000 indices during the same time 

periods discussed in this work (1986-1990 and 1997-2001). Also important 

is to verify the time stability of our results by analyzing other major market 

transition periods such as 1928 -1932 or the interval 1939-1943. This last in­

terval includes, for the first time in history, three consecutive years in which 

the market finished lower than it started, similar to the years 2 0 0 0 -2 0 0 2 .

For cases when the sample data  can be embedded in a  Euclidian space and 

a metric can be defined between vector points, the analogy with real physical 

phenomena becomes more obvious. In such situations, one can imagine more 

robust algorithms by simulating a self-organizing evolution of the system 

which increases its chances to end up in the global minimum. At this stage
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the Nucleation and Growth Algorithm offers a more noise-resistant cluster­

ing method than the Percolation Clustering Algorithm due to its randomly 

adding data  points. This gives the noise and outliers a lower probability to 

disturb the ‘‘real” partitioning. Nevertheless, uphill moves are not included 

and the system cannot escape eventual local minima. A further development 

of the algorithm should introduce a temperature dependent mobility and in­

teraction as well as a validity criterion of partitioning. All of these require 

a careful investigation of the motion in a continuous Euclidian space, which 

becomes more and more difficult with the increasing dimensionality of the 

problem. A careful, efficient implementation of this technique is a project 

for future work.

Since many clustering problems deal with large regions of empty space 

that increase with the increasing dimensionality of sample points, a random 

deposition in a continuum can be very time consuming. A natural develop­

ment of the NGA would be to restrict the deposition sites to fixed points such 

as the Discrete Deposition Clustering Algorithm does. Future work regarding 

this last method is to apply it to to different data  sets in order to establish 

its robustness and limits. It is important to analyze the algorithm with dif­

ferent long and short range interaction functions, which would influence the 

convergence of the method as well as the sharpness of the simulated phase 

transition. These considerations become important when dealing with hier­

archical clusters and when several phase transition are expected. Therefore a 

future project would be to use the DDCA on a data file which contains hier­

archical clusters. The resolution of the obtained partition must be analyzed
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in connection with different interaction functions.

Finally, in the study of the correlation matrix between the portfolio assets, 

the economic relevance of the eigenvectors corresponding to the significant 

eigenvalues has to be more firmly established. Studying the distribution of 

these components may offer important information about the main factors 

that influence the market.
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Appendix A  

DJIA Components

The appendix lists the stocks studied in the dissertation. The assets are pre­

sented in alphabetical order of their ticker symbol along with the company's 

name and the primary industrial group they belong to.

For the interval 1986-1990, due to the lack of complete historical records, 

the representative chosen assets are from the DJIA components tracked dur­

ing the year 1991. These components are listed in Table A.I. Only 26 of 

these assets, recorded in normal font, have complete updated data and were 

analyzed; the other four, written in italic were overlooked.

During the years 1997 through 2002 the studied assets, listed in Table 

A.2, are the 30 DJIA components as defined for the year 2001.
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A .l  DJIA Components for 1991

Ticker Company Name Prim ary Group

AA Alcoa Inc. Aluminum Commodity
ALD Allied Signal Industrial Diversified
AXP American Express Co. Diversified Financial
BA Boeing Co. Aerospace
BS Bethlehem Steel Steel Commodity
CAT Caterpillar Inc. Heavy Machinery
CHV Chevron Oil Company, Major
DD E.I. DuPont de Nemours St Co. Chemicals Commodity
DIS Walt Disney Co. Broadcasting
EK Eastman Kodak Co. Recreational Products St Services
GE General Electric Co. Industrial Diversified
C M General Motors Corp. Automobile Manufactuters
G T Goodyear Tire Inc. Tire & Rubber manufacturing
IBM International Business Machines Corp. Computers
IP International Paper Co. Paper Products
JPM J.P. Morgan Chase St Co. Banks, E x -S i L
KO Coca-Cola Co. Soft Drinks
MCD McDonald's Corp. Restaurants
MMM Minnesota Mining and

Manufacturing Company Heavy Industry
MO Philip Morris Cos. Inc. Tobacco
MRK Merck St Co. Inc. Pharmaceuticals
PG Procter St Gamble Co. Household Products, Nondurable
S Sears, Roebuck St Co. Retailers, Broadline
T AT&T Corp. Fixed-Line Communications
TX Texaco Oil Company, Major
UK Union Carbide Chemical Manufacturing
UTX United Technologies Corp. Aerospace. Industrial Diversified
WX Westmghouse Industrial Diversified
XOM Exxon Mobil Corp. Oil Company, Major
Z Woolworth Retailers, Broadline

Table A.l: Dow Jones Industrial Average components during 1991 listed in 
the order of their ticker symbol, together with the primary group they belong 
to.
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A.2 DJIA Components for 2001

Ticker Company Name Primary Group

AA Alcoa Inc. Aluminum Comm odity
AXP American Express Co. Diversified Financial
BA Boeing Co. Aerospace
C Citigroup Inc. Diversified Financial
CAT Caterpillar Inc. Heavy Machinery
DD E.I. DuPont de Nemours i t  Co. Chemicals Comm odity
DIS Walt Disney Co. Broadcasting
EK Eastm an Kodak Co. Recreational P roducts & Services
GE General Electric Co. Industrial Diversified
GM General Motors Corp. Automobile M anufactuters
HD Home Depot Inc. Retailers, Specialty
HON Honeywell International Inc. Industrial Diversified
HPQ Hewlett-Packard Co. Computers
IBM International Business Machines Corp. Computers
INTC Intel Corp. Semiconductors
IP International Paper Co. Paper Products
JN J Johnson & Johnson Pharmaceuticals
JPM J.P. Morgan Chase & Co. Banks. Ex-S&L
KO CocarCola Co. Soft Drinks
MCD McDonald’s Corp. Restaurants
MMM Minnesota Mining and

Manufacturing Company Heavy Industry
MO Philip Morris Cos. Inc. Tobacco
MRK Merck & Co. Inc. Pharmaceuticals
MSFT Microsoft Corp. Software
PG Procter & Gamble Co. Household Products, Nondurable
SBC SBC Communications Inc. Fixed-Line Communications
T AT&T Corp. Fixed-Line Communications
UTX United Technologies Corp. Aerospace, Industrial Diversified
W MT Wal-Mart Stores Inc. Retailers, Broadline
XOM Exxon Mobil Corp. Oil Company, M ajor

Table A.2: Dow Jones Industrial Average components during 2001 listed in 
the order of their ticker symbol, together with the primary group they belong 
to.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Appendix B 

Histograms of Quarterly 
Correlation Coefficients

The appendix presents the histograms of the quarterly correlation coeffi­

cients between the studied assets. There are 325 independent correlation 

coefficients between the 26 stocks analyzed during the interval 1986-1990 

and 435 independent correlation coefficients between the 30 assets studied 

during the period 1997-2001. The range of the histograms and the number of 

bins have been chosen to best accommodate the correlation coefficient values 

and their distribution. For ease of comparison, all histograms during the first 

five-year time interval have the correlation coefficient in the range of -0.3 to 

0.9 and 150 bins. The histograms for the second interval are displayed with 

a correlation coefficient range of -0.4 to 0.8 and 150 bins.

Note the Gaussian shape of the histograms during some of the analyzed 

quarters and the deviation from this shape for other quarters. Usually, as 

one can see from the Tables 5.1 and 5.2, these deviations correspond to down 

market intervals.
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19861st quarter | 1986 2nd quarter |
Nent = 325 

Mean = 0.3894 

RMS =0.1288

Nent = 325 
Mean =0.3042 
RMS =0.1537

-0.2 0 0.2 0.4 0.6 0.8 -0.2 0 0.2 0.4 0.6 0.8

1986 3rd quarter |
Nent = 325 
Mean =0.3967 
RMS =0.1602

1986 4th quarter |
Nent = 325 
Mean = 0.2991 
RMS =0.1577

-0.2 0 0.2 0.4 0.6 0.8
■ **■■■ 1 ■ ■ ■

•0.2 0 0.2 0.4 0.6 0.8

Figure B .l: Histograms of the quarterly correlation coefficients between 26 
of DJIA components, highlighted in Table A .l, for the year 1986.
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119871st quarter |
Ntflt = 325 

Mmti = 0-2943 

RMS =0.1414

Ib l J
•0.2 0 0.2 0.4 0.6 0.8

1987 2nd quarter |
Nant = 32S 
Mmti =0.3898 
RMS =0.1465

•0.2 0 0.2 0.4 0.6 0.8

1987 3rd quarter |
Nent = 325 

Mean =0.3365 

RMS =0.1534

-0.2 0 0.2 0.4 0.6 0.8

1987 4th quarter

Nwit = 325 
Mean =0.7667 
RMS =0.09391

2 -

0 0.2 0.4 0.6 0.8 1

Figure B.2: Histograms of the quarterly correlation coefficients between 26 
of DJIA components, highlighted in Table A .l, for the year 1987.
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19881s t quarte r |

Merit = 325 

Mean =0.5518 

RMS = 0.11512  -

10-

0

1988 3rd quarter |

Nent = 325 
Mean =0.4785 
RMS =0.1264

1988 2nd quarter!

Nent = 325 

Mean = 0.5637 
RMS =0.1403

1988 4th quarter |
Nent = 325 
Mean = 0.3625 
RMS = 0.151

Jl
•04 0 04 0.4 0.8 04 •04 0 04 0.4 0.0 04

Figure B.3: Histograms of the quarterly correlation coefficients between 26 
of DJIA components, highlighted in Table A.l, for the year 1988.
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1989 2nd quarter |19891st quarter
Nent = 325 
Mnn = 0.3817 

RMS =0.1165

2 -

-0.2 0 0.2 0.4 0.6 0.8 •0.2 0 0.2 0.4 0.6 0.8

1989 3rd quarter |
Nent = 325 
Mean =0.2441 
RMS =0.1457

1989 4th quarter |

Nent = 325 
Mean = 0.475 
RMS = 0.127

■ ■ ■ ill ■ IB
0.2 0.4 0.6 OS •0.2 OS 0.4 0.6 OS

Figure B.4: Histograms of the quarterly correlation coefficients between 26 
of DJIA components, highlighted in Table A .l, for the year 1989.
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1990 2nd quarter I19901st quarter
Nant = 32S 

Mean = 0.3909 
RMS = 0.1324

Nent = 325 
Mean =0.3435 
RMS =0.1424

M

1990 3rd quarter | 1990 4th quarter |
Nent = 325 

Mean =0.4097 

RMS =0.1993 Nant = 325 

Mean =0.3914 
RMS =0.1731

•0.2 0 0.2 0.4 0.6 OS -0.2 0 0.2 0.4 0.6 0.8

Figure B.5: Histograms of the quarterly correlation coefficients between 26 
of DJIA components, highlighted in Table A .l, for the year 1990.
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Nant = 435 
Mean =0.4785 
RMS =0.1394

•0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure B.6 : Histograms of the quarterly correlation coefficients between the 
30 DJIA components, listed in Table A.2, for the year 1997.
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1998 2nd quarter |
Nent = 435 
Mean =0.2377 
RMS =0.1472

19981st quarter |
Nent = 435 
Mean =0.2312 
RMS =0.1373

•0.4 -0.2 0 0.2 0.4 0.6 OS

1998 3rd quarter |

Nent = 435 
Mean =0.4434
RMS =0.1381
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1998 4th quarter |

Nent = 435 
Mean =0.2292 
RMS =0.1626
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Figure B.7: Histograms of the quarterly correlation coefficients between the 
30 DJIA components, listed in Table A.2, for the year 1998.
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1999 2nd quarter |
Nent = 435
Mean = 0.126< 
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1999 4th quarter |
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Figure B.8 : Histograms of the quarterly correlation coefficients between the 
30 DJIA components, listed in Table A.2, for the year 1999.
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20001st quarter |
Nent = 435 
Mean =0.2169 
RMS =0.1788

2000 2nd quarter |
Nent = 435 
Mean =0.1585 
RMS = 0.168

U
•0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Nent = 435 

Mean =0.0752 
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Figure B.9: Histograms of the quarterly correlation coefficients between the 
30 DJIA components, listed in Table A.2, for the year 2000.
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Figure B.10: Histograms of the quarterly correlation coefficients between the 
30 DJIA components, listed in Table A.2, for the year 2001.
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Appendix C 

Eigenvalue Spectra of 
Quarterly Correlation Matrices

The appendix displays the histograms of the eigenvalues for the quarterly 

correlation matrices between the studied assets. For consistency, all of the 

histograms have the range of the represented eigenvalues between -1  and 2 0  

with 100  bins.

There are 26 eigenvalues for the 26 x 26 correlation matrices between the 

assets studied during the period 1986-1990. The number of eigenvalues for 

the second analyzed interval, 1997-2001. is 30 since the correlation matrices 

have, in this case, the size 30 x 30.
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Figure C .l: Eigenvalue spectra of the quarterly correlation matrices for the 
26 major US companies during the year 1986.
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Figure C.2: Eigenvalue spectra of the quarterly correlation matrices for the 
26 major US companies during the year 1987.
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Figure C.3: Eigenvalue spectra of the quarterly correlation matrices for the 
26 major US companies during the year 1988.
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Figure C.4: Eigenvalue spectra of the quarterly correlation matrices for the 
26 major US companies during the year 1989.
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Figure C.5: Eigenvalue spectra of the quarterly correlation matrices for the 
26 major US companies during the year 1990.
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Figure C.6 : Eigenvalue spectra of the quarterly correlation matrices for the 
30 DJIA components during the year 1997.
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Figure C.7: Eigenvaluea spectra of the quarterly correlation matrices for the 
30 DJIA components during the year 1998.
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Figure C.8 : Eigenvalue spectra of the quarterly correlation matrices for the 
30 DJIA components during the year 1999.
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Figure C.9: Eigenvalue spectra of the quarterly correlation matrices for the 
30 DJIA components during the year 2000.
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Figure C.10: Eigenvalue spectra of the quarterly correlation matrices for the 
30 DJIA components during the year 2001.
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